Beckhoff Минск т.80447584780 Viber email minsk17@tut.by www.fotorele.net www.tiristor.by радиодетали, электронные компоненты tel.+375 297584780 мтс

каталог, описание, технические, характеристики, datasheet, параметры, маркировка, габариты, фото, даташит, Beckhoff

где и как купить в Минске?

Сделать заявку или запрос можно по телефону факсу или по электронной почте Просим Вас указывать в заявке:

- название предприятия, факс, контактный телефон, контактное лицо;
- полное наименование и количество товара;
- возможность замены или аналоги;

Каталог Beckhoff

Position measurement | EnDat 2.2 interface

The EL5032 EnDat 2.2 EtherCAT Terminal is used for direct connection of two encoders with EnDat 2.2 interface. The EL5032 enables reading of position values, diagnosis encoder data, internal and external temperature values and the electronic identification plate. With the electronic identification plate all measuring device-specific information is directly available. In addition, user-defined data can be stored in the encoder. This enables cost-effective and quicker commissioning. The position value is output with up to 48 bits, depending on the resolution of the connected measuring device. In addition to the position value, further information such as status information, addresses and data can be transferred. A list of additional information supported by the encoder is stored in the parameters. The EL5032 features distributed clocks, which means that the position value can be read in exact synchrony with the system. If the distributed clock function is deactivated, the EL5032 cycles synchronous with the EtherCAT cycle.

	2-channel EnDat 2.2 interface
Technical data	EL5032
Technology	EnDat 2.2 interface
Number of channels	2
Nominal voltage	24 V at power contact, built in encoder supply, max. 0.5 A
Encoder supply	optionally 5 V DC or 9 V DC
Current consumption power contacts	typ. 150 mA
Current consumption E-bus	typ. 120 mA
Commands	reading position values including additional information available for selection via MRS code (Memory Range Select), reading and writing parameters, reset functions
Distributed clocks	yes
Encoder connection	D+, D-, C+, C-
Resolution	max. 48 bit for position
Special features	saving the zero offset shift, electronic type plate, diagnostics, warning, including cable length compensation up to 100 m , reading the encoder temperature values
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$
Approvals	CE
Weight	approx. 50 g
Further information	www.beckhoff.com/EL5032

Position measurement | Incremental/SinCos encoder interfaces

As opposed to absolute value encoders, incremental encoders do not provide a direct position, but rather two changing/pulsed signals that are phase-shifted by 90°, which can be used to calculate back to a position. To this end, digital position encoders subdivide a 360° rotation of the encoder axis into individual steps (increments). For position encoders with analog sin/cos interface it is subdivided into periods, with a period corresponding to a full revolution of the sine/cosine signal. A full revolution of the encoder axis is indicated by a special marker/zero pulse. The number of increments determines both the resolution of an encoder and the accuracy of the position.

The EL51xx terminals support microincrement mode: By interpolating the signal voltages, the resolution is increased 256 -fold and can be used for refining the positioning.

Using the EL5021, an n-times more precise position determination is achieved within one period through interpolation of the two 90° phase-shifted sine signals. Depending on the setting (8 to 13 bit), a micro-resolution of the period of 256 to 8,192 times can be achieved.

The quadruple evaluation of the signals A and B (quadrature encoder) produces a fine positional resolution and enables detection of the direction.

SinCos signal depending on the encoder position

Abstract

1-channel incremental encoder interface, differential input (RS485)

The EL5101 is an interface for the direct connection of incremental encoders with differential (RS485) or singleended inputs. It supplies 5 V for the encoder supply.

Nominal voltage	24 V DC at power contact		
Current consum. pow. cont.	typ. $100 \mathrm{~mA}+$ load		
Current consumption E-bus	typ. 130 mA		
Distributed clocks	yes		
Input signal	difference signal (RS485), single-ended possible		
Encoder connection	A, A (inv), B, B (inv), C,C (inv), differential inputs (RS485); status input 5 V DC; gate/latch input 24 V DC		
Encoder operating voltage	5 V DC/max. 0.5 A		
Input frequency	max. 4 million increments/s (with 4-fold evaluation)		
Resolution	1/256 bit microincrements		
Counter	$1 \times 16 / 32$ bit switchable		
Special features	wire breakage detection, latch and gate function, period duration and frequency measurement, microincrements, time-stamping of edges, filters		
Operating temperature	$-25 \ldots+60^{\circ} \mathrm{C}$		
Approvals	CE, UL, Ex		
Weight	approx. 100 g		
Further information	www.beckhoff.com/EL5101		
Special terminals	EL5101-0010	i EL5101-0	
Distinguishing features	20 million increments/s (with 4-fold evaluation), no single-ended operation	TwinSAFE SC	324

ㅍ For availability status see Beckhoff website at: www.beckhoff.com

1-channel incremental encoder interface, single-ended, 24 V DC	2-channel incremental encoder interface, single-ended, 24 V DC	1-channel SinCos encoder interface, 1 Vpp
EL5151 \| ES5151	EL5152 \| ES5152	EL5021 \| ES5021
incremental encoder interface 24 V DC, EN 61131-2, type 1, "0": < 5 V DC, " 1 ": > 15 V DC, typ. 5 mA		SinCos encoder interface for differential $1 \mathrm{~V}_{\mathrm{pp}}$ signal
	2	1
The EL5151 and EL5152 are interfaces with 24 V inputs for the direct connection of incremental encoders. For each channel a 32-bit counter with quadrature decoder can be read and set. In addition, the EL5151 offers a 32-bit latch for the zero pulse. Alternatively, both terminals can be used as forward/backward counters. Due to their support of distributed clocks, the EL515x terminals can detect the axis positions together with other slaves synchronously and with high temporal accuracy.		The EL5021 is an interface for the direct connection of a measuring sensor with sinusoidal voltage output $1 \mathrm{~V}_{\text {Vp }}$. The measuring signal is provided as a 32 bit value. The maximum resolution of the counter value is 24 bit, the maximum resolution of the signal period is 13 bit. The reference mark is stored in a 32 bit value.
24 V DC at power contact		24 V DC at power contact
typ. $100 \mathrm{~mA}+$ load		typ. $50 \mathrm{~mA}+$ load
typ. 130 mA		typ. 120 mA
yes		yes
24 V DC		1 V PP
A, B, C, gate/latch input 24 V DC, $24 \mathrm{~V} / 0 \mathrm{~V}$	A1, B1, A2, B2, $24 \mathrm{~V} / 0 \mathrm{~V}$	A, A (inv), B, B (inv), C, C (inv)
24 V DC		5 V DC/max. 0.5 A
max. 400,000 increments/s (with 4-fold evaluation)		250 kHz @ 10 bit (sampling frequency 70 MHz)
1/256 bit microincrements		max. 13 bit, 8,192 steps per period
$1 \times 16 / 32$ bit switchable	2×32 bit	max. 24 bit
gate or latch function, microincrements, time stamping of edges, period duration and frequency measurement, up/down counters	microincrements, period duration and frequency measurement, up/down counters	latch, reset, amplitude and frequency error recognition, frequency-dependent period resolution, frequency counter max. 24 bit
$-25 \ldots+60^{\circ} \mathrm{C}$		$0 \ldots+55^{\circ} \mathrm{C}$
CE, UL, Ex		CE, Ex
approx. 50 g		approx. 55 g
www.beckhoff.com/EL5151	www.beckhoff.com/EL5152	www.beckhoff.com/EL5021
(i) EL5151-0021		i EL5021-0090
with parameterisable 24 V DC output and workpiece measurement		TwinSAFE SC 324

Communication | Serial interfaces RS232/RS485

The EL60xx serial interfaces enable the connection of devices with RS232 or RS422/RS485 interfaces to the control level. The devices connected to the EtherCAT Terminal communicate via the EtherCAT network with the automation device. The active communication channel works independently of the cycle of the higher-level EtherCAT system in full duplex mode at up to 115.2 kbaud. This way, any desired number of serial interfaces can be used in the application without having to consider structural restrictions in the control device. The serial interface can be positioned close to the place of use, this way reducing the necessary cable lengths.

The RS232 interface allows for high immunity to interference through electrically isolated signals. In the EL6021 this is additionally supported by differential signal transmission according to RS422. The EL6022 can make $2 \times 5 \mathrm{~V} / 20 \mathrm{~mA}$ from the E-bus supply available for powering external devices.

The EL60xx can be used as a normal Windows COM interface in conjunction with the TwinCAT Virtual Serial COM Driver (see page 963).

	$1 \times$ serial interface RS232/RS422/RS485		$2 \times$ serial interface RS232/RS422/RS485	
Technical data	$\begin{aligned} & \text { EL6001 \| } \\ & \text { ES6001 } \end{aligned}$	$\begin{aligned} & \text { EL6021\| } \\ & \text { ES6021 } \end{aligned}$	EL6002	EL6022
Data transfer rates	2,400...115,200 baud; default: 9,600 baud, 8 data bits, no parity and one stop bit		300...115,200 baud; default: 9,600 baud, 8 data bits, no parity and one stop bit	
Interfaces	$1 \times \mathrm{RS} 232$	$\begin{aligned} & 1 \times \operatorname{RS} 4221 \\ & \text { RS485 } \\ & \hline \end{aligned}$	$2 \times \mathrm{RS} 232$	$\begin{aligned} & 2 \times R S 4221 \\ & \text { RS } 485 \end{aligned}$
Technology	terminal contact		D-sub, 9-pin	
Data buffer	864 bytes receive buffer, 128 bytes transmit buffer		864 bytes receive buffer, 128 bytes transmit buffer	
Current consumption power contacts	-		-	
Current consumption E-bus	typ. 120 mA	typ. 170 mA	typ. 170 mA	typ. 270 mA
Distributed clocks	-		-	
Cable length	max. 15 m	approx. 1,000 m twisted pair	max. 15 m	approx. 1,000 m twisted pair
Line impedance	-	120Ω	-	120Ω
Special features	-		$2 \times 5 \mathrm{~V} / 20 \mathrm{~mA}$ for external supply (EL6022)	
Operating temperature	$-25 . . .+60^{\circ} \mathrm{C}$		$-25 . . .+60^{\circ} \mathrm{C}$	
Approvals	CE, UL, Ex		CE, UL, Ex	
Weight	approx. 55 g		approx. 55 g	
Further information	www.beckhoff.com/EL6001		www.beckhoff.com/EL6002	

Communication | License key terminal for TwinCAT 3.1

TwinCAT 3.1 enables management of TwinCAT licenses via the EL6070 EtherCAT Terminal. The EL6070 is used as a hardware license key in the modular EtherCAT I/O system. Via an interface, the terminal can also be used for secure data encryption. Data transfer takes place via EtherCAT.

For even more convenient handling of the TwinCAT 3.1 licensing, from hardware version 02 the EL6070 license key terminal is equipped with a local data memory. The data memory is used for storing the TwinCAT 3.1 license files. It is not freely accessible and is managed by TwinCAT 3.1.

The functionally equivalent C9900-L100 license key USB stick also features this data memory.
$\left.\begin{array}{l|lll}\hline & \text { License key terminal } \\ \text { for TwinCAT } 3.1\end{array}\right]$

License key terminal
for TwinCAT 3.1

C9900-L100 | License key USB stick
for TwinCAT 3.1

Communication | EtherCAT memory terminal 128 kbyte

The EL6080 EtherCAT memory terminal has 128 KB of non-volatile memory (NOVRAM). The terminal can be used to store and read out parameters and recipes. Part of the memory can also be used for the cyclic storage of machine data such as operating hour meters or production numbers. The EtherCAT Terminal is used, for example, for storing module-related data in the machine module in modular machine concepts with a central controller.

Data is only stored in the RAM in the live terminal and is therefore not stored permanently. However, this allows unlimited access for reading and writing. In the event of a power failure, an internal buffer supplies the NOVRAM block until the entire contents of the RAM have been stored in a non-volatile memory.

The EL6080 supports memory access with cyclic process data or via acyclic SDO/ CoE. The access time depends in both cases on the size of the data. For cyclic access, the user must create a set of process data with an arbitrary structure, which is then written to or read from the terminal in its entirety. This process takes several task cycles, depending upon the size of the data and the cycle time, and is controlled by a handshake.

	EtherCAT memory terminal 128 kbyte, NOVRAM	
Technical data	EL6080	
Technology	EtherCAT memory terminal	
Memory	128 kbyte NOVRAM	
		$\begin{aligned} & +60^{\circ} \mathrm{C} \\ & \mathrm{~B}^{-25^{\circ} \mathrm{C}} \\ & \mathrm{fm} / \mathrm{Pm}_{\mathrm{n}} \\ & 25 \mathrm{~g} \end{aligned}$

Communication | Display terminal - operating hours counter

The display terminal has an illuminated, low-reflection LC display with two lines of 16 characters. It can be used, for example, for displaying status messages or diagnostic information. A non-resettable operating hours counter is integrated and can be displayed and also read out via the controller.

Via the user program dynamic and static application-specific texts can be displayed, e.g. "Production counter: (count value)". If the output text is longer than 16 characters, the terminal automatically switches to scrolling text mode. Two special characters can be defined via a 5×8 pixel matrix.

The statuses of the navigation switch - up, down, left, right and enter - are transmitted to the controller as binary variables and can be used, for example, to control the display.

	Display terminal with navigation switch and operating hours counter
Technical data	EL6090
Technology	EtherCAT display terminal
Switch inputs	navigation switch: up, down, left, right, enter
Display	LC display, 2×16 characters (> 16 characters = scrolling text mode), switchable backlight
Special characters	2 characters (5×8 pixel matrix)
Operating hours counter	32 bit overflow after 136 years (no reset possible), secure data storage >100 years (@15 minutes writing interval), accuracy: $\pm 50 \mathrm{ppm}$
Time measuring	4×32 bit second counter (reset possible)
Counter	4×32 bit counter (reset possible)
Storage interval	manual/automatic every 15 minutes
Current consumption power contacts	-
Current consumption E-bus	typ. 80 mA
Distributed clocks	-
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$
Approvals	CE
Weight	approx. 70 g
Further information	www.beckhoff.com/EL6090

Communication | Ethernet switch port terminals

The EL6601 and EL6614 Ethernet switchport terminals serve the local connection of arbitrary Ethernet devices to the EtherCAT system. The EtherCAT system relays the Ethernet communication of the connected devices fully transparent and collision-free.

The EL6614 Ethernet switchport terminal has an integrated 5 -port switch. It manages the data from the EtherCAT system and the four RJ 45 ports. In full-duplex mode, the terminal enables the collision-free communication of the connected devices with one another.

The EL6601 and EL6614 are suitable for transmitting and receiving "normal" non-real-time-critical Ethernet frames, e.g. with TCP/IP contents. The throughput specified in the documentation must be observed. TwinCAT, as a "virtual switch", manages these frames at the IPC Ethernet port, which is configured as an EtherCAT device.

In addition, the EL6601 and EL6614 can appear as a publisher/subscriber like a real-time Ethernet device and can be configured as such in TwinCAT. Real-time data are preferred by the terminal and processed synchronously with the EtherCAT cycle. In this way, several hundred bytes of process data can be transmitted and received cyclically, up to < 1 ms.

Ethernet	Ethernet switch port terminal, 1 port	Ethernet switch port terminal, 4 ports, internal switch
Technical data	EL6601	EL6614
Ethernet interface	10BASE-T/100BASE-TX Ethernet with $1 \times$ RJ45	10BASE-T/100BASE-TX Ethernet with $4 \times$ RJ45
Data transfer rates	10/100 Mbit/s, IEEE 802.3 u auto-negotiation, half or full duplex at 10 and $100 \mathrm{Mbit} /$ s possible, automatic settings	
Cable length	up to 100 m twisted pair	up to 100 m twisted pair
Protocol	all Ethernet (IEEE 802.3)based protocols, store and forward switching mode	all Ethernet (IEEE 802.3)based protocols, store and forward switching mode
Current consumption power contacts	-	-
Current consumption E-bus	typ. 310 mA	typ. 450 mA
Distributed clocks	-	-
Special features	support of RT Ethernet, publisher/subscriber, DHCP/BootP address allovation (1 device)	support of RT Ethernet, publisher/subscriber, DHCP/BootP address allovation (1 device)
Operating temperature	$-25 . . .+60^{\circ} \mathrm{C}$	$-25 . . .+60^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex	CE, UL, Ex
Weight	approx. 75 g	approx. 95 g
Further information	www.beckhoff.com/EL6601	www.beckhoff.com/EL6614

Communication | IEEE 1588 external synchronisation

The Precision Time Protocol can be used in order to generate an identical time base within an application, i.e. over several networks. PTP is a protocol that secures the synchronicity of the time settings of several devices in a network and which is defined in IEEE 1588 standard as the protocol standard for the synchronisation of distributed clocks in networks. As opposed to the NTP (Network Time Protocol), the emphasis in PTP is on higher accuracy. The applicational synchronisation can be implemented using TwinCAT and the EL6688 IEEE 1588 External Synchronisation Interface.

If the PTP Ethernet frames are routed by switches in a larger network, then PTP-compatible switches should to be used in order to attain the highest possible synchronisation accuracy. These enter the self-caused data delays into the correction values provided in the PTP data. In this way, the accuracy of the synchronisation of the master to the slave is not affected negatively by the transmission delays.

The EL6688 is the simplest way to synchronise an EtherCAT system with appropriate interface devices to the global world time via GPS or radio transmitters such as DFC77. If more than two EtherCAT systems are to be synchronised with one another, the EtherCAT Terminal is likewise the means of choice.

Applicational synchronicity in the network thanks to distributed clocks according to IEEE 1588

IEEE 1588 external synchronisation interface

Technical data	EL6688
Ethernet interface	10BASE-T/100BASE-TX Ethernet with $1 \times$ RJ45
Data transfer rates	$10 / 100 \mathrm{Mbit} / \mathrm{s}$, IEEE 802.3 u auto-negotiation, half or full duplex at 10 and $100 \mathrm{Mbit} / \mathrm{s}$ possible, automatic settings
Cable length	up to 100 m twisted pair

The EL6688 EtherCAT Terminal is a device in the IEEE 1588 synchronisation system that supports the Ethernet-based precision time protocols PTPv1 (IEEE 1588-2002) and PTPv2 (IEEE 1588-2008). On the one hand, the EL6688 is an IEEE 1588 clock (master or slave), which is synchronised within the scope of the protocol accuracy. On the other hand, it is synchronised by the EtherCAT master as an EtherCAT Terminal in the distributed clocks system, or it provides the reference clock for the EtherCAT system. To do this, it only needs to be selected as the "reference clock" in the TwinCAT System Manager. This way, a consistent timebase can be created across applications for any number of spatially separated TwinCAT EtherCAT systems and machine sections, e.g. for applications with axes or measurement technology. The compact EtherCAT Terminal enables flexible deployment depending on the application requirements.

Protocol	PTPv1 (IEEE 1588-2002), PTPv2 (IEEE 1588-2008)
Current consumption power contacts	-
Current consumption E-bus	typ. 310 mA
Distributed clocks	yes
Cable length	up to 100 m twisted pair
Special features	usable in TwinCAT as a reference clock
Operating temperature	$0 . . .+55^{\circ} \mathrm{C}$
Approvals	$\mathrm{CE}, \mathrm{UL}, \mathrm{Ex}$
Weight	approx. 75 g
Further information	www.beckhoff.com/EL6688

Communication | EtherCAT bridge terminals

The slaves within an EtherCAT system are synchronised by the distributed clocks system. In each slave capable of doing so, a local clock triggers the reading in of inputs and the output of outputs synchronously with all other slaves. A slave represents the reference clock, according to which the EtherCAT master/TwinCAT synchronises all other slaves. For event logging and axis synchronisation, the synchronous operation of several EtherCAT systems is useful. The EL669x, which serves as a crossover point between two EtherCAT systems, can be used for interconnection: it is an EtherCAT Terminal on the so-called primary side and an EtherCAT slave with an RJ45 connection on the so-called secondary side. The direction of the time synchronisation is selectable. TwinCAT can use this terminal as the reference clock in the synchronised system; this way, the entire lowerlevel system is operated synchronously with the primary system. With the same cycle times, both real-time tasks then work synchronously in TwinCAT.

The power supply for the secondary side (RJ45) of the EL6695 is via an external connection, the primary side is supplied via the E-bus. The bridge terminal can also be used for integrating a subordinate PC system as an EtherCAT slave.

Example topologies EL669x

EtherCAT bridge terminal	EtherCAT bridge terminal
EL6692	EL6695
primary side: E-bus (terminal strand), secondary side: $2 \times 100 ~ M b i t / s ~ E t h e r n e t, ~ R J 45, ~ I n / O u t ~$	
EtherCAT distributed clock synchronisation, data exchange	

Technical data	EL6692	EL6695
Technology	primary side: E-bus (terminal strand), secondary side: 2×100 Mbit/s Ethernet, RJ45, In/Out	
Function	EtherCAT distributed clock synchronisation, data exchange	

The EL6692 and EL6695 are EtherCAT bridge terminals with different performance levels for the synchronous and asynchronous data transmission between two EtherCAT systems. The EL6695 differs from the EL6692 in a flexible CoE configuration, the possibility for device emulation and significantly higher data throughput rates. Apart from that, a reconfigurable partial transmission of the PDO can be offered through selective PDO mapping. Especially with modular or changing machine concepts this is a helpful function.

Nominal voltage	24 V DC (secondary side)	$24 \mathrm{~V} \mathrm{DC} \mathrm{(secondary} \mathrm{side)}$
Current consumption power contacts	-	-
Current consumption E-bus	E-bus: 120 mA, external: $60 \mathrm{~mA} / 24 \mathrm{~V}$ typ.	E -bus: typ. 400 mA, external: $80 \mathrm{~mA} / 24 \mathrm{~V}$ typ.
Distributed clocks	yes	yes
Power supply	primary: via the E-bus, secondary: via connector	primary: via the E-bus, secondary: via connector, 24 V
Cyclic process data per direction	max. 480 byte	max. 1400 byte
Special features	usable in TwinCAT as a reference clock, supports	usable in TwinCAT as a reference clock, synchronous data exchange, flexible PDO mapping, supports AoE, EoE,
	ADS over EtherCAT (AoE)	FoE, VoE
Operating temperature	$-25 . .+60^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$
Approvals	CE, Ex	CE
Weight	approx. 85 g	
Further information	www.beckhoff.com/EL6692	approx. 85 g
www.beckhoff.com/EL6695		

Communication | AS-Interface master terminal

The AS-Interface (AS-i = Actuator Sensor interface) is a fieldbus communication method for actuators and sensors. The master cyclically transmits telegrams to the individual slaves via a 2 -core yellow ribbon cable, which serves at the same time for the 24 V power supply. Up to 62 slaves with a total of 496 inputs and 496 outputs are supported, depending on the protocol.

AS-Interface potential feed terminal EL9520 see page 440

Cycle time	max. 5 ms (at 31 or 62 slaves)
Current consumption power contacts	-
Current consumption	120 mA (E-Bus), typ. $40 \mathrm{~mA} / \mathrm{max} .60 \mathrm{~mA}$ (AS-Interface)
Distributed clocks	-
AS-Interface diagnostics	power failure, slave failure, parameterisation error
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$
Approvals	CE
Weight	approx. 55 g
Further information	www.beckhoff.com/EL6201

Communication | IO-Link terminal

The EL6224 IO-Link terminal enables connection of up to four IO-Link devices, e.g. actuators, sensors or combinations of both. A point-to-point connection is used between the terminal and the device. The terminal is parameterised via the EtherCAT master. IO-Link is designed as an intelligent link between the fieldbus level and the sensor, allowing parameterisation information to be exchanged bidirectionally via the IO-Link connection. The parameterisation of the IO-Link devices with service data can be done from TwinCAT via ADS.

In the standard setting, the EL6224 functions as a 4 -channel input terminal, 24 V DC, which communicates with connected IO-Link devices, parameterises them and, if necessary, changes their operating mode.

Integration into the HD housing with 16 connection points enables each IO-Link device to be operated in 3-wire connection mode.

Additional 24 V and 0 V connection points can be realised via the EL918x potential distributor terminal.

Q TO-Link	4-channel input/output, IO-Link master terminal	
Technical data	EL6224	
Technology	IO-Link input/output	
Specification version	IO-Link V1.1	
Data transfer rates	4.8 kbaud, 38.4 kbaud and 230.4 kbaud	
Number of channels	4 IO-Link interfaces	
		$\begin{aligned} & \mathrm{pm} / \mathrm{fm} \\ & 25 \mathrm{~g} \end{aligned}$
Supply current for devices	500 mA per device	
Current consumption power contacts	typ. $20 \mathrm{~mA}+$ load	
Current consumption E-bus	typ. 120 mA	
Distributed clocks	-	
Cable length	max. 20 m	
Special features	each channel parameterisable in TwinCAT	
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$	
Approvals	CE, UL, Ex	
Weight	approx. 60 g	
Further information	www.beckhoff.com/EL6224	
Special terminals	i EL6624-0090	
Distinguishing features	TwinSAFE SC	324

Communication | PROFINET controller/device

The EL6631 PROFINET RT controller (master) terminal supports the complete real-time function (RT) as well as extensive diagnostic possibilities. All services according to conformance class B are supported. Up to 15 PROFINET RT devices can be projected on the EL6631.

The EL6631-0010 PROFINET RT device (slave) terminal enables the simple exchange of data between EtherCAT and the PROFINET RT controllers. Within the EtherCAT strand it represents a slave that can consist of up to 65,535 devices. The EL6631-0010 contains a 3-port switch; two of these ports are fed externally to RJ45 sockets. This allows the construction of the I/O stations as a line topology, thus reducing wiring. The maximum distance between two devices is 100 m .

Protocols such as LLDP or SNMP can be used for network diagnostics.

The EL6632 PROFINET IRT Controller Terminal supports the complete RT (real-time) or IRT (isochronous real-time) function as well as providing extensive diagnostic options.

All services in accordance with Conformance Class C are supported. Depending on the cycle time, up to five PROFINET IRT or up to 15 PROFINET RT devices can be operated at the EL6632 in a line topology. The maximum distance between two devices is 100 m . Protocols such as LLDP or SNMP can be used for network diagnostics.

$\frac{P R O F I^{\circledR}}{+N E T}$	PROFINET RT controller/ device terminal	PROFINET IRT controller
Technical data	EL6631	i EL6632
Technology	PROFINET RT	PROFINET IRT
Ethernet interface	100BASE-TX Ethernet with $2 \times$ RJ45	
Number of channels	2 (switched)	2 (switched)
Protocol	RT	RT or IRT
Current consumption power contacts	-	-
Current consumption E-bus	typ. 400 mA	typ. 400 mA
Distributed clocks	-	-
Cable length	up to 100 m twisted pair	up to 100 m twisted pair
Special features	LLDP, SNMP, Conformance Class B, max. 15 RT devices, min. 1 ms RT cycle	Conformance Class C, max. 5 IRT devices, max. 15 RT devices, min. $500 \mu \mathrm{~s}$ IRT cycle, min. 1 ms RT cycle
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$ (see documentation)	$0 \ldots+55^{\circ} \mathrm{C}$ (see documentation)
Approvals	CE, UL, Ex	CE
Weight	approx. 75 g	approx. 75 g
Further information	www.beckhoff.com/EL6631	www.beckhoff.com/EL6632
Special terminals	EL6631-0010	
Distinguishing features	PROFINET RT device	

Communication | EtherNet/IP master/slave terminal

The EL6652 EtherNet/IP master terminal and the EL6652-0010 EtherNet/IP slave terminal have a switched 2-port Ethernet connection and can thus be operated in a line with further Ethernet/IP nodes. The process data are configured by an EtherCAT master, allowing different process data and different sizes.

The EL6652 and EL6652-0010 support both multicast and unicast connections. With the EL6652, up to 16 simple EtherNet/IP slave devices can be connected via one generic node. The EL6652-0010 is optionally available for connecting EtherCAT with an EtherNet/IP master.

EtherNet/IP"	EtherNet/IP master/slave terminal	
Technical data	EL6652	EL6652-0010
Technology	EtherNet/IP master terminal	EtherNet/IP slave terminal
Ethernet interface	100BASE-TX Ethernet with $2 \times$ RJ45	
Number of channels	2 (switched)	
Protocol	EtherNet/IP	EtherNet/IP slave
Number of possible slave devices	max. 16 slave nodes	-
Current consumption power contacts	-	
Current consumption E-bus	typ. 400 mA	
Distributed clocks	-	
Cable length	up to 100 m twisted pair	
Special features	multicast/unicast connection	
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$ (see documentation)	
Approvals	CE	
Weight	approx. 75 g	
Further information	www.beckhoff.com/EL6652	

Communication | PROFIBUS master/slave terminal

The EL6731 PROFIBUS master terminal corresponds to the FC3101 PROFIBUS PCI card. Connection via EtherCAT allows PCl slots in the PC to be dispensed with; instead, any desired number of PROFIBUS master terminals (EL6731) or slave terminals (EL67310010) can be used in the field. This reduces cabling and facilitates the connection of existing fieldbus installations to the highperformance EtherCAT fieldbus.

The terminal can handle the PROFIBUS protocol with all features and enables the integration of arbitrary PROFIBUS devices in the EtherCAT Terminal network. The terminal has a PROFIBUS chip with the latest PROFIBUS technology - including a highprecision isochronous mode for axis control and advanced diagnostic options.

The EL6731 allows the operation of PROFIBUS slaves with different polling rates and is distinguished by the following characteristics:

- Cycle times from 200μ s are possible.
- PROFIBUS DP, PROFIBUS DP-V1, PROFIBUS DP-V2
- master and slave monitor up to $12 \mathrm{Mbit} / \mathrm{s}$
- powerful parameter and diagnostics interfaces
- The error management for each bus user is freely configurable.
- It is possible to read the bus configuration and automatically assign the "GSD" files.

Communication | CANopen master/slave terminal

The EL6751 CANopen master terminal corresponds to the FC5101 CANopen PCI card. Connection via EtherCAT allows PCI slots in the PC to be dispensed with; instead, any desired number of CANopen master or slave terminals can be used in the field. The EL6751 enables the integration of arbitrary CANopen devices in the EtherCAT Terminal network. It is alternatively available as a master (EL6751) or slave (EL6751-0010). In addition, general CAN messages can be sent or received - without having to bother with CAN frames in the applications program. The terminal has a powerful protocol implementation with many features:

- support for all CANopen PDO communication modes: event-controlled, time-controlled (event timer), synchronous, polling
- synchronisation with the task cycle of the PC controller
- SYNC cycle with quartz precision for drive synchronisation, zero cumulative jitter
- parameter communication (SDO) at start-up and when running
- emergency message handling, guarding and heartbeat
- powerful parameter and diagnostics interfaces
- online bus load display

Communication | DeviceNet master/slave terminal

The EL6752 DeviceNet master terminal corresponds to the FC5201 DeviceNet PCI card. Connection via EtherCAT allows PCI slots in the PC to be dispensed with; instead, any desired number of DeviceNet master or slave terminals can be used in the field. The EL6752 allows the integration of arbitrary DeviceNet devices in the EtherCAT Terminal network. It is alternatively available as a master (EL6752) or slave (EL6752-0010). The DeviceNet terminal has a powerful protocol implementation with many features:

- support of all DeviceNet I/O modes: polling, change of state, cyclic, strobed
- Unconnected Message Manager (UCMM)
- offline connection set, Device Heartbeat Messages, Device Shutdown Messages
- Auto Device Replacement (ADR)
- powerful parameter and diagnostics interfaces
- The error management for each bus user is freely configurable.

DeviceNet	DeviceNet master/slave terminal	
Technical data	EL6752	EL6752-0010
Technology	DeviceNet master terminal	DeviceNet slave terminal
Data transfer rates	125, 250, 500 kbaud	
Interfaces	open style connector, 5 -pin, according to DeviceNet specification, galvanically decoupled (Connector is supplied.)	
Number of channels	1	
		$0^{+60^{\circ} \mathrm{C}} \mathrm{~B}^{\circ} \mathrm{C}$
Fieldbus	DeviceNet	
Current consumption power contacts	-	
Current consumption E-bus	typ. 260 mA	
Distributed clocks	-	
Bus device	max. 63 slaves	
Special features	DeviceNet scanner	
Operating temperature	$-25 \ldots+60^{\circ} \mathrm{C}$	
Approvals	CE, UL, Ex	
Weight	approx. 70 g	
Further information	www.beckhoff.com/EL6752	

Communication | Lightbus master/Interbus slave terminal

Lightbus

The EL6720 Lightbus master terminal enables the connection to Lightbus devices just as the Beckhoff FC2001 Lightbus PCI card. Due to the connection via EtherCAT, no PCl slots are required in the PC. The terminal controls the Lightbus protocol with all its features. Within an EtherCAT Terminal network, the EL6720 enables the integration of any Lightbus slaves. The terminal has a powerful protocol implementation with many features:

- Cycle times up to 100μ s are possible.
- Process data communication can either be free running or synchronised.
- powerful parameter and diagnostics interfaces (ADS)

Lightbus accessories see page $\quad 688$

Interbus

Interbus is a ring system, i.e. all devices are actively integrated into a closed transmission path. Each device regenerates the incoming signal and passes it on. In the Interbus system, both the data line and the return line are fed through all devices inside one cable. This results in the physical appearance of a line or tree structure. The master-slave system allows the connection of a maximum of 512 devices, which form the structure of a spatially distributed shift register. Each device, with its registers of different lengths, is part of the shift register ring. The master pushes data through the ring serially. Due to the point-to-point connection method, termination resistors do not have to be installed.

The EL6740-0010 Interbus slave terminal enables data exchange between EtherCAT and Interbus. For both bus systems the terminal "mirrors" up to 32 word input and 32 word output to the respective other system. The outputs are written to the inputs of the other bus with minimum delay. The terminal can use the Interbus protocol up to a baud rate of 2 Mbits. Due to the connection via EtherCAT, no PCI slots are required in the PC.

LIGHTBUS	Lightbus master terminal	Interbus slave terminal
Technical data	EL6720	EL6740-0010
Technology	Lightbus master terminal	Interbus slave terminal
Data transfer rates	2.5 Mbaud	500 kbits, 2 Mbits (default)
Interfaces	$2 \times$ fibre optic standard connector Z1000 (plastic fibre), Z1010 (HCS fibre)	$2 \times$ D-sub plug, 9-pin, plug and socket with screening and vibration lock
Number of channels	1	1
	 = 4t Ir \square (4) Θ II LIGHTBUS Hecampf rem	
Fieldbus	Lightbus	Interbus, max. 400 m between 2 stations at 500 kbit/s
Type of connection	fibre optic standard connector	only remote bus
Current consumption power contacts	-	-
Current consumption E-bus	typ. 240 mA	typ. 450 mA
Distributed clocks	-	-
Bus device	max. 254 nodes with a max. of 65,280 I/O points per fieldbus connection	-
Special features	3 priority-controlled logical communication channels	status LEDs
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex	CE, UL, Ex
Weight	approx. 70 g	approx. 80 g
Further information	www.beckhoff.com/EL6720	www.beckhoff.com/EL6740

Communication | DMX master/slave terminal

DMX is the standard protocol for controlling professional stage and effect lighting equipment, which is used, for example, for the dynamic lighting of showrooms and salesrooms as well as for exclusive displays of light and colour in high-profile buildings, such as hotels and event centres. For static DMX light sources (e.g. spotlights), colour mixing and brightness values are transmitted, while moving DMX light sources (e.g. moving heads and scanners) receive additional spatial coordinates. The high data transfer rate of EtherCAT permits higher update rates of light settings, resulting in more harmonious changes of light and colour as perceived by the human eye.

The EL6851 DMX master terminal allows the direct connection of up to 32 DMX devices and supports the transmission of the full DMX protocol width
of 512 bytes in just one control cycle using EtherCAT. This way, random devices, such as scanners, moving heads or spotlights can be controlled (see illustration below).

The EL6851-0010 DMX slave terminal acts as a link to the DMX world and enables professional stage and effect lighting to be implemented in conjunction with standard hardware. It takes on the information from the DMX master for the assigned automation equipment. This way, theatre and show stages can be constructed with standard hardware at reduced cost, but with full flexibility. The data from the DMX telegram are output on simple digital outputs, stepper motors or dimmer terminals. Furthermore, it is possible to transmit the DMX data to a DALI network and in this way to indirectly operate DALI ballasts with DMX.

The EL6851 EtherCAT Terminal is a DMX master terminal and enables connection of up to 32 devices without repeater. The DMX master terminal can send up to 512 bytes of data. At $250 \mathrm{kbit} / \mathrm{s}$ a maximum data rate of 44 kHz is thus possible.

Data length	max. 512 bytes	
Protocol	DMX512	
Current consumption power contacts	-	
Current consumption E-bus	typ. 130 mA	
Distributed clocks	-	
Bus device	max. 32 without repeater	-
Line impedance	120Ω	
Special features	supports RDM protocol, library available; electrically isolated	start address and data length can be set
Operating temperature	$0 . . .+55^{\circ} \mathrm{C}$	
Approvals	CE, UL, Ex	
Weight	approx. 55 g	
Further information	www.beckhoff.com/EL6851	

Communication | TwinSAFE, PROFIsafe

| | TwinSAFE Logic | | TwinSAFE/PROFIsafe |
| :--- | :--- | :--- | :--- | :--- |
| logic and gateway terminal | | | |

For TwinSAFE products and further information on the TwinSAFE technology see page
ㅍ For availability status see Beckhoff website at: www.beckhoff.com/EL6910

Motion | 4-axis interface

The EM7004 interface module is designed for direct connection of servo drives with ± 10 V DC interface and incremental encoder output for position feedback and represents a cost-effective solution for drives in the lower and medium speed range. The individual servo interfaces are electrically isolated from each other. The analog I/Os and the incremental encoder connections have a common reference potential. Further digital inputs and outputs turn the compact module into a complete - and sole link between the control and application level. Internal preprocessing of the signals enables users to modify outputs with short reaction times, depending on the position.

Motion | Stepper motor terminals

Stepper motors are often used in positioning drives. They allow, by the combination of single steps, a positioning process without feedback of the rotor positions. This "open control chain" mode of operation and the longevity of a stepper motor are particularly interesting for price-sensitive fields of application.

In contrast with a DC motor the control of a stepper motor is carried out by the different energisation of the individual motor windings following a defined pattern of pulses. The electromagnetic field of the stator is switched intermittently so that the shaft turns through the step angle a. The motor follows the impulse pattern of the control unit, until the coupled momentum exceeds its holding momentum or the impulse demand is too dynamic, which leads to standstill of the motor. The EL703x and EL704x EtherCAT stepper motor terminals, which are suitable for highly dynamic movement, solve this problem also in areas of higher speeds of rotation.

The EL703x and EL704x stepper motor terminals are designed for direct connection of medium capacity stepper motors. A high frequency clocked PWM output stage regulates the currents through the motor coils.

The stepper motor terminals are synchronised with the motor by parameterising. Unipolar as well as bipolar stepper motors can be driven. Additional inputs support functions like homing and final position monitoring. 64-fold micro stepping ensures particularly quiet and precise motor opera-
tion even with standard technology. Together with a stepper motor, the stepper motor terminals represent an inexpensive small servo axis. The EL7037 and EL704x also include an incremental encoder interface to read position data.

The stepper motor terminals can be controlled like a servo drive by a speed interface from a Motion Control software such as TwinCAT for example. In applications with a less complex and less powerful CPU the control is also possible via a position interface (travel distance control). The stepper motor terminals move the motor themselves to a desired position. Ramp steepness and maximum speed can be entered as parameters.

Irregular operation at certain speed ranges with standard technology, particularly without coupled load, indicates that the stepper motor is being run at its resonance frequency. Under certain circumstances the motor may even stop. Resonances in the lower frequency range essentially result from the mechanical motor parameters. Apart from their impact on smooth running, such resonances can lead to significant loss of torque, or even loss of step of the motor, and are therefore particularly undesirable. The EL7041-1000 special version with fieldoriented control is particularly well suited for such low-mass and therefore resonancecritical applications.

In combination with the AS10xx series stepper motors, the EL7037 and EL7047 EtherCAT Terminals optionally support field-
oriented control. The advantages of this operating mode are:

- low power consumption
(almost entirely load-dependent)
- high efficiency
- consistent dynamics compared with standard mode
- Step losses are inherently eliminated. The EL703x stepper motor terminal is designed exclusively for 24 V supply voltage. The motor current can reach up to 1.5 A . The EL704x covers a supply voltage range from $8 \mathrm{~V} D C$ to $50 \mathrm{~V} D$ and also needs a 24 V supply from the power contacts. The motor current can be set from 1 to 5 A . The EL7041-1000 special version is compatible to the KL2541.

The peak current may briefly significantly exceed the rated current and in this way makes the whole drive system very dynamic. In such dynamic applications, negative acceleration causes the feedback of energy, which leads to voltage peaks at the power supply unit. An EL9576 brake chopper terminal protects from the effects of overvoltage, in that it absorbs some of the energy. For voltage values exceeding the capacity of the terminal, an external resistor has to be connected to eliminate surplus energy.

AS10xx | Stepper motors see page
868
EL9576 | Brake chopper terminal see page 443

Connection of a bipolar AS10xx stepper motor, parallel

	Stepper motor terminal $24 \mathrm{~V} \text { DC, } 1.5 \mathrm{~A}$	Stepper motor terminal $24 \text { V DC, 1.5 A, }$ with incremental encoder, vector control	Stepper motor terminal 50 V DC, 5 A, with incremental encoder	Stepper motor terminal 50 V DC, 5 A, with incremental encoder, vector control
Technical data	EL7031 \| ES7031	EL7037	EL7041 \| ES7041	EL7047
Technology	direct motor connection			
Load type	uni- or bipolar stepper motors			
Max. output current	1.5 A (overload- and short-circuit-proof)		5 A (overload- and short-circuit-proof)	
Number of channels	1 stepper motor, 2 digital inputs	1 stepper motor, encoder input, 2 digital inputs	1 stepper motor, encoder input, 2 digital inputs	
Nominal voltage	24 V DC (-15 \%/+20 \%)		8...50 V DC	
Current consumption power contacts	typ. $30 \mathrm{~mA}+$ motor current	typ. 50 mA	typ. 50 mA	
Current consumption E-bus	typ. 120 mA	typ. 100 mA	typ. 140 mA	typ. 100 mA
Distributed clocks	yes		yes	
Maximum step frequency	$1,000,2,000,4,000 \text { or } 8,000$ full steps/s (configurable)	1,000, 2,000, 4,000, 8,000 or 16,000 full steps/s (configurable)	$1,000,2,000,4,000 \text { or } 8,000$ full steps/s (configurable)	$1,000,2,000,4,000,8,000$ or 16,000 full steps/s (configurable)
Step pattern	64-fold micro stepping		64-fold micro stepping	
Current controller frequency	approx. 25 kHz	approx. 30 kHz	approx. 30 kHz	
Control resolution	approx. 5,000 positions in typ. applications (per revolution)		approx. 5,000 positions in typ. applications (per revolution)	
Encoder signal	-	$5 . . .24 \mathrm{~V}$ DC, 5 mA , single-ended	$5 \ldots 24 \mathrm{~V}$ DC, 5 mA , single-ended	
Pulse frequency	-	max. 400,000 increments/s (with 4-fold evaluation)	max. 400,000 increments/s (with 4-fold evaluation)	
Special features	travel distance control	travel distance control, encoder input, vector control	travel distance control, encoder input	travel distance control, encoder input, vector control
Weight	approx. 50 g		approx. 90 g	
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$		$0 . . .+55^{\circ} \mathrm{C}$	
Approvals	CE		CE	
Further information	www.beckhoff.com/EL7031	www.beckhoff.com/EL7037	www.beckhoff.com/EL7041	www.beckhoff.com/EL7047
Special terminals			EL7041-1000	
Distinguishing features			for resonance-critical applications	

Motion | Servomotor terminals

Servomotors demonstrate their advantages in highly dynamic and precise positioning applications:

- very high positioning accuracy in applications where maximum precision is required through integrated position feedback
- high efficiency and high acceleration capacity
- Servomotors are overload-proof and therefore have far greater dynamics than stepper motors, for example.
- The high torque is load-independent up to the upper speed ranges.
- The use of servomotors reduces maintenance to a minimum.
These advantages increase the performance and efficiency of an application: the high dynamics with fast start-stop changes and the precise positioning capability thanks to the integrated positional feedback enable the coordination of several servomotors with one another for the synchronisation of several axes.

The EL72x1 and EL72x1-0010 servomotor terminals are a fully functional servo drive in a standard HD (High Density) terminal housing with a width of 12 mm or 24 mm for the direct driving of servomotors. They offer terminal points for a servomotor as well as for a motor brake and a feedback system. The fast

EL7201 | Servomotor terminal: Motor cables and further cables see page 864
control technology, based on field-oriented current and PI speed control, supports highly dynamic and frequently changing positioning tasks. The monitoring of important load criteria such as overvoltage and undervoltage, overcurrent, terminal temperature and motor load, which are derived from the calculation of an I2T model, guarantees the user maximum operational reliability.

While the EL72x1 supports a resolver as feedback system, the EL72x1-0010 offers the user the option to use an absolute feedback system. With the One Cable Technology (OCT) the encoder cable is omitted by transmitting the encoder signal digitally via the existing motor cable. The EL7211 and EL2711-00010 are characterised by their increased performance of 4.5 Arms.

Since the EL72x1 and the EL72x1-0010 servomotor terminals are completely integrated into the EtherCAT Terminal network, it is not necessary to wire up the controller; the space requirement is significantly reduced. The E-bus connection provides the user with all well-known EtherCAT features: in particular short cycle times, low jitter and simple diagnostics. EtherCAT offers precisely the performance that imposes no limits on the dynamics of a servomotor. Modern power semiconductors guarantee minimum power losses and also enable energy recovery in

EL7201-0010 | Servomotor terminal with OCT: Reduced commissioning costs due to ommission of the encoder cable
the intermediate circuit in braking mode. For highly dynamic applications and for supplying several servomotors from one power supply unit, the additional use of the EL9576 brake chopper terminal is recommended. It protects from the effects of overvoltage, in that it absorbs some of the energy. If the voltage exceeds the capacity of the terminal, it gets rid of the excess energy via an external resistance.

The EL72x1 and EL72x1-0010 are tested and pre-configured for the synchronous servo motors from the AM31xx and AM81xx series. In conjunction with the AM31xx and AM81xx they enable very dynamic, precise and compact applications.

AM81xx | Servomotors with OCT see page 862

AM31xx | Servomotors
see page 862
EL9576 | Brake chopper terminal see page 443

ZB85xx | Shielding connection system see page 448

	Servomotor terminal $50 \mathrm{VDC}, 2.8$ Arms	Servomotor terminal 50 V DC, 4.5 Arms	Servomotor terminal with OCT, 50 V DC, 2.8 Arms	Servomotor terminal with OCT, 50 V DC, 4.5 Arms
Technical data	EL7201	EL7211	EL7201-0010	EL7211-0010
Connection method	direct motor connection			
Load type	permanent-magnet synchronous motors			
Number of channels	1 servomotor, resolver, motor brake		1 servomotor, absolute feedback, motor brake, 2 digital inputs	
Nominal voltage	$8 \ldots 50 \mathrm{~V} \text { DC }$		$8 \ldots 50 \mathrm{~V}$ DC	
Current consumption power contacts	typ. $50 \mathrm{~mA}+$ holding current motor brake		typ. $50 \mathrm{~mA}+$ holding current motor brake	
Current consumption E-bus	typ. 120 mA		120 mA	
Current controller frequency	double PWM clock frequency		double PWM clock frequency	
Output current $\mathrm{IN}^{\text {N }}$	2.8 A (rms)	4.5 A (rms)	2.8 A (rms)	4.5 A (rms)
Peak current $\mathrm{IN}^{\text {N }}$	5.7 A (rms) for 1 s	9.0 A (rms) for 1 s	5.7 A (rms) for 1 s	9.0 A (rms) for 1 s
Frequency range	$0 \ldots .599 \mathrm{~Hz}$		0... 599 Hz	
PWM clock frequency	16 kHz		16 kHz	
Rated speed controller frequency	16 kHz		16 kHz	
Output voltage motor brake	24 V DC (+6 \%/-10 \%)		24 V DC (+6 \%/-10 \%)	
Output current motor brake	max. 0.5 A		max. 0.5 A	
Special features	compact (only 12 mm wide), system-integrated	compact and system-integrated	compact (only 12 mm wide), system-integrated, absolute feedback, One Cable Technology (OCT), plug-and-play	compact and system-integrated, absolute feedback, One Cable Technology (OCT), plug-and-play
Weight	approx. 60 g	approx. 95 g	approx. 60 g	approx. 95 g
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$		$0 \ldots+55^{\circ} \mathrm{C}$	
Approvals	CE		CE	
Further information	www.beckhoff.com/EL7201	www.beckhoff.com/EL7211	www.beckhoff.com/ EL7201-0010	www.beckhoff.com/ EL7211-0010

Motion | 2-channel DC motor output stages

DC motors can replace the servomotors in many applications if they are operated with an intelligent controller. A DC motor can be integrated very simply into the control system using the EL7332 and EL7342 EtherCAT Terminals. All parameters are adjustable via the fieldbus. The small, compact design and DIN rail mounting make the EtherCAT DC motor output stages suitable for a wide range of applications. The output stages are protected against overload and short circuit and offer an integrated feedback system for incremental encoders on a case-by-case basis. Two DC motors can be controlled by one terminal.

Two areas of application are particularly well supported by the output stages:

- Simple controller for low demands on the cycle time at inexpensive processor power: by the use of the integrated travel distance control, the EL73x2 EtherCAT Terminal can perform positioning travels independently without the use of NC. Nothing further is required apart from a DC motor and a terminal.
- High-end positioning by means of integration in TwinCAT NC: in conjunction with the EtherCAT DC motor output stage, the DC motor is used with TwinCAT for the application without further changes analogous to a servo-axis.

The control of a DC motor is simple to implement in comparison with other motors, since the speed of rotation is proportional to the voltage. It can be adjusted directly via the process data with the EL7332 and EL7342 EtherCAT Terminals. The integrated compensation of the internal resistance keeps the motor at the desired speed for load changes. Thus a simple drive task can be solved using a simple controller.

The EL7332 EtherCAT Terminal enables direct operation of two DC motors. It is electrically isolated from the E-bus. The speed is preset by a 16 bit value from the automation unit. The EtherCAT Terminal contains two channels whose signal state is indicated by LEDs. The LEDs enable quick local diagnosis.

For demanding positioning tasks a closed speed control loop with a feedback system is needed. Apart from the operation of two DC motors, the EL7342 EtherCAT Terminal enables the connection of an incremental encoder. The control loop can be closed either by the EtherCAT Terminal itself or by higherlevel controller (see illustration).

The peak current may briefly significantly exceed the rated current and in this way makes the whole drive system very dynamic. In such dynamic applications, negative accel-
eration causes the feedback of energy, which leads to voltage peaks at the power supply unit. The EL9576 brake chopper terminal protects from the effects of overvoltage, in that it absorbs some of the energy. If the voltage exceeds the capacity of the terminal, it gets rid of the excess energy via an external resistance.

EL9576 | Brake chopper terminal see page 443

[^0]

System terminals | Function terminals

The power feed terminals make it possible to set up various potential groups with any desired voltages (EL9190) or with the standard voltages of 24 V DC or 230 V AC (120 V AC). They are available with or without fine-wire fuse. In order to monitor the supply voltage, the terminals with diagnostics function report the status of the power feed terminal to the EtherCAT Coupler through two input bits. It is thus possible for the controller to check the distributed peripheral voltage over the fieldbus. The operating point performance conforms to the input terminals EL1002 (24 V) and EL1702 (230 V).

The EL9180, EL9185 and EL9195 EtherCAT Terminals allow the supply voltage to be accessed a number of times via spring force terminals. They make it unnecessary to use additional terminal blocks on the terminal strip.

The EL9195 or EL9070 EtherCAT Terminal can be used for the connection of screens. It connects the spring force contacts directly to the DIN rail and can optimally ground incoming electromagnetic radiation. The two power contacts are looped through by the EL9195, allowing two wires to be connected to each.

The EL9080 is used to identify potential groups (e.g. $230 \mathrm{VAC/}$ 24 V DC). It is inserted between two potential groups, and indicates the separation through an orange coloured cover.
Potential supply terminal, 120... 230 V AC, with diagnostics

Technical data	$\begin{aligned} & \hline \text { EL9100\| } \\ & \text { ES9100 } \end{aligned}$	$\begin{array}{l\|} \hline \text { EL9110\| } \\ \text { ES9110 } \end{array}$	$\begin{aligned} & \hline \text { EL9150\| } \\ & \text { ES9150 } \end{aligned}$	$\begin{gathered} \hline \overline{\mathbf{i}} \text { EL9160\| } \\ \text { ES9160 } \\ \hline \end{gathered}$
Technology	potential supply terminal	potential supply terminal with diagnostics	potential supply terminal	potential supply terminal with diagnostics
Diagnostics in the process image	-	yes	-	yes
		 :	: 芴 O_{5} 20: B 9. :.:.:	
Nominal voltage	24 V DC	24 V DC	$\begin{aligned} & 120 \mathrm{~V} \mathrm{ACI} \\ & 230 \mathrm{~V} \mathrm{AC} \end{aligned}$	$\begin{aligned} & 120 \mathrm{~V} \mathrm{ACI} \\ & 230 \mathrm{~V} \mathrm{AC} \end{aligned}$
Integrated fine-wire fuse	-	-	-	-
Current load	$\leq 10 \mathrm{~A}$	$\leq 10 \mathrm{~A}$	$\leq 10 \mathrm{~A}$	$\leq 10 \mathrm{~A}$
Power LED	green	green	green	green
Defect LED	-	-	-	-
PE contact	yes	yes	yes	yes
Shield connection	-	-	-	-
Current consumption E-bus	-	typ. 90 mA	-	typ. 90 mA
Connection to DIN rail	-	-	-	-
Electrical isolation	yes	yes	yes	yes
Special features	-	-	-	-
Operating temperature	$-25 \ldots+60^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex	CE, UL, Ex	CE, UL	CE, UL
Weight	approx. 50 g	approx. 50 g	approx. 50 g	approx. 50 g
Further information	www.beckhoff. com/EL9100	www.beckhoff. com/EL9110	www.beckhoff. com/EL9150	www.beckhoff. com/EL9160

[^1]| Potential supply terminal, any voltage up to 230 V AC | Potential
 supply
 terminal,
 24 V DC,
 with fuse | Potential
 supply
 terminal,
 24 V DC,
 with diagnos-
 tics and fuse | Potential supply terminal, 120... 230 V AC, with fuse | Potential
 supply
 terminal, $\text { 120... } 230 \mathrm{VAC}$
 with diagnos-
 tics and fuse | Potential
 supply
 terminal,
 arbitrary,
 with fuse | Shield terminal | Shield terminal | Separation terminal |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { EL9190\| } \\ & \text { ES9190 } \end{aligned}$ | EL9200 | EL9210 | i EL9250 | i EL9260 | i EL9290 | EL9070 | $\begin{aligned} & \hline \text { EL9195 \| } \\ & \text { ES9195 } \end{aligned}$ | EL9080 |
| potential
 supply
 terminal | potential
 supply
 terminal
 with fuse | potential sup-
 ply terminal
 with diagnos-
 tics and fuse | potential
 supply
 terminal
 with fuse | potential sup-
 ply terminal
 with diagnos-
 tics and fuse | potential
 supply
 terminal
 with fuse | shield terminal | | separation terminal |
| - | | yes | - | yes | - | | | |
| | :......:
 多多 ${ }^{2} \mathrm{CO}$ | | | | | | | |
| arbitrary up to 230 V ACIDC | 24 V DC | 24 V DC | $\begin{aligned} & 120 \mathrm{~V} \mathrm{AC/} \\ & 230 \mathrm{VAC} \end{aligned}$ | $\begin{aligned} & 120 \mathrm{~V} \mathrm{ACI} \\ & 230 \mathrm{VAC} \end{aligned}$ | arbitrary up to 230 V AC/DC | arbitrary up to 230 V AC | arbitrary up to 230 V AC/DC | separation terminal |
| - | ...6.3 A | ...6.3 A | $\ldots 6.3 \mathrm{~A}$ | $\ldots 6.3 \mathrm{~A}$ | $\ldots 6.3 \mathrm{~A}$ | - | - | - |
| $\leq 10 \mathrm{~A}$ |
-	green	green	green	green	-	-	-	-
-	red	red	red	red	-	-	-	-
yes	yes	yes	yes	yes	yes	-	-	-
-	-	-	-	-	-	8 x	2 x	-
-	-	typ. 90 mA	-	typ. 90 mA	-	-	-	-
-	-	-	-	-	-	yes	yes	-
yes	yes	yes	yes	yes	yes	-	-	yes
-	-	-	-	-	-	dissipation of EMC interference via large copper surfaces on the DIN rail	dissipation of EMC interference	placeholder terminal with E-bus transmission
$0 \ldots+55^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$							
CE, UL	CE, UL, Ex	CE, UL, Ex	CE	CE	CE	CE	CE, UL, Ex	CE, UL, Ex
approx. 50 g	approx. 50 g	approx. 55 g	approx. 55 g	approx. 55 g	approx. 50 g	approx. 50 g	approx. 50 g	approx. 50 g
www.beckhoff. com/EL9190	www.beckhoff. com/EL9200	www.beckhoff. com/EL9210	www.beckhoff. com/EL9250	www.beckhoff. com/EL9260	www.beckhoff. com/EL9290	www.beckhoff. com/EL9070	www.beckhoff. com/EL9195	www.beckhoff. com/EL9080

System terminals | Function terminals

The EL918x potential distribution terminals enable - depending upon the type - the distribution of ground or supply potentials to external devices. Wiring work and separate potential distributors are saved. Eight ground points are required for the ground connection of 8-channel output terminals in 2-wire operating mode, e.g. EL2008, for which the EL9187 can be used. The EL9184 and EL9188 HD EtherCAT Terminals (High Density) even make 16 connection points available in a compact housing.

Each assembly must be terminated at the right hand end with an EL9011 bus end cap.

	End cap	Potential distribution terminal, 2 terminal points per power contact	Potential distribution terminal, 4 terminal points at 2 power contacts	Potential distribution terminal, $8 \times 24 \mathrm{~V}$
Technical data	EL9011	$\begin{aligned} & \text { EL9180\| } \\ & \text { ES9180 } \end{aligned}$	$\begin{aligned} & \text { EL9185\| } \\ & \text { ES9185 } \end{aligned}$	$\begin{aligned} & \text { EL9186\| } \\ & \text { ES9186 } \end{aligned}$
Technology	end cap	potential distributi	on terminal	
Diagnostics in the process image	-			
Nominal voltage	end cap	arbitrary up to 230 V AC/DC	arbitrary up to 230 V AC/DC	$\leq 60 \mathrm{~V}$
Integrated fine-wire fuse	-	-	-	-
Current load	$\leq 10 \mathrm{~A}$	$\leq 10 \mathrm{~A}$	$\leq 10 \mathrm{~A}$	$\leq 10 \mathrm{~A}$
Power LED	-	-	-	-
Defect LED	-	-	-	-
PE contact	-	yes	-	-
Shield connection	-	-	-	-
Current consumption E-bus	-	-	-	-
Electrical connection to DIN rail	-	-	-	-
Electrical isolation	yes	-	-	-
Special features	cover for the E-bus contacts	-	-	-
Operating temperature	$-25 \ldots+60^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex	CE, UL, Ex	CE, UL, Ex	CE, UL, Ex
Weight	approx. 10 g	approx. 50 g	approx. 50 g	approx. 50 g
Further information	www.beckhoff. com/EL9011	www.beckhoff. com/EL9180	www.beckhoff. com/EL9185	www.beckhoff. com/EL9186

Potential distribution terminal, $8 \times 0 \mathrm{~V}$	Potential distribution terminal, 2×8 terminal points	Potential distribution terminal, 8×2 terminal points	Potential distribution terminal, 1×16 terminal points	Potential distribution terminal, $8 \times 24 \mathrm{~V}, 8 \times 0 \mathrm{~V}$	Potential distribution terminal, $16 \times 24 \mathrm{~V}$	Potential distribution terminal, $16 \times 0 \mathrm{~V}$
$\begin{aligned} & \hline \text { EL9187 \| } \\ & \text { ES9187 } \end{aligned}$	EL9181	EL9182	EL9183	EL9184	EL9188	EL9189

System terminals | Power supply terminals

The EL94xx and EL95xx terminal series are designed for the modified feeding of the operating voltage into the terminal strand. The EL9400 ane EL9410 power supply terminals enable the refreshment of the E-bus, via which data exchange takes place between the EtherCAT Coupler and the EtherCAT Terminals. Each EtherCAT Terminal requires a certain amount of current from the E-bus (see technical data: "Current consumption E-bus"). This current is fed into the E-bus by the relevant EtherCAT Coupler's power supply unit. When configuring a large number of EtherCAT Terminals, the 5 V power supply to the E-bus can be increased by 2 A via the EL9400/EL9410. As opposed to the EL9400, the EL9410 has a diagnostic function which is displayed by LED and on the process image.

The EL95xx power supply terminals produce different output voltages from the input voltage (24 V DC) that can be accessed at the terminals. The following EtherCAT Terminals are also supplied with this voltage via the power contacts. The power LEDs indicate the operating states of the terminals; short-circuits or overloads are indicated by the overcurrent LEDs. There is no electrical isolation of the input and output voltage.

	Power supply terminal for refreshing the E-bus	Power supply terminal for refreshing the E-bus, with diagnostics	AS-Interface potential feed terminal, with filter
Technical data	EL9400 \| ES9400	EL9410 \| ES9410	EL9520 \| ES9520
Technology	power supply termina		AS-Interface potential feed terminal
Diagnostics in the process image	-	yes	-
			The EL9520 potential feed terminal uncouples the input and output signal through an integrated filter and enables the supply of AS-Interface networks from standard power supply units or another AS-Interface network.
Input voltage	24 V DC	24 V DC	up to 35 V
Output voltage	5 V for E-bus supply	5 V for E-bus supply	up to 35 V
Input current	approx. $70 \mathrm{~mA}+$ (E-bus/4)	approx. $70 \mathrm{~mA}+$ (E-bus/4)	load-dependent
Max. output current	2 A	2 A	2 A
Short-circuit-proof	-	yes	-
Current consumption E-bus	-	-	-
Electrical isolation	-	-	-
Insulation voltage input/output	-	-	-
Special features	for new projects: please use EL9410	standard EL supply	no electrical isolation
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex	CE, UL, Ex	CE
Weight	approx. 65 g	approx. 65 g	approx. 90 g
Further information	www.beckhoff.com/ EL9400	www.beckhoff.com/ EL9410	www.beckhoff.com/ EL9520

Power supply terminal, 5 V DC, with diagnostics	Power supply terminal, 8 V DC, with diagnostics	Power supply terminal, 10 V DC, with diagnostics	Power supply terminal, 12 V DC, with diagnostics	Power supply terminal, 15 V DC, with diagnostics	Power supply terminal, 24 V DC, electrical isolation
EL9505 \| ES9505	EL9508 \| ES9508	EL9510 \| ES9510	EL9512 \| ES9512	EL9515 \| ES9515	EL9560 \| ES9560
power supply terminal					
yes					
The EL9505 generates 5 V from the fed-in 24 V without electrical isolation.	The EL9508 generates 8 V from the fed-in 24 V without electrical isolation.	The EL9510 generates 10 V from the fed-in 24 V without electrical isolation.	The EL9512 generates 12 V from the fed-in 24 V without electrical isolation.	The EL9515 generates 15 V from the fed-in 24 V without electrical isolation.	24 V generation from the 24 V fed-in with electrical isolation, potential-free
24 V DC (-15 \%/+20 \%)					
5 V DC ± 1 \%	8 V DC ± 1 \%	10 V DC ± 1 \%	12 V DC ± 1 \%	15 V DC ± 1 \%	24 V DC (-15 \%/+5 \%)
load-dependent	load-dependent	load-dependent	load-dependent	load-dependent	load-dependent
0.5 A	0.1 A				
yes	yes	yes	yes	yes	yes
90 mA					
-	-	-	-	-	$1,500 \mathrm{~V} \mathrm{AC}$ constant load field side/E-bus
-	-	-	-	-	500 V AC permanent load (field side)
diagnostics overcurrent, output voltage	automatic restart after short-circuit, diagnostics Uiw/Uour				
$0 \ldots+55^{\circ} \mathrm{C}$					
CE, Ex	CE				
approx. 65 g					
www.beckhoff.com/ EL9505	www.beckhoff.com/ EL9508	www.beckhoff.com/ EL9510	www.beckhoff.com/ EL9512	www.beckhoff.com/ EL9515	www.beckhoff.com/ EL9560

System terminals | Surge filter system and field supply

The EL9540 system terminal contains an overvoltage filter for the 24 V field supply, the EL9550 for the 24 V field and system supply. The filter protects the EtherCAT Terminals from line-bound surge voltages that can occur due to high-energy disturbances such as switching overvoltages at inductive consumers or lightning strikes at the supply lines. The EtherCAT Terminals EL9540 or EL9550 protect the terminal station from damage in particularly harsh environments. The ship classification organisations require the use in shipbuilding applications and in the onshore/offshore sector.
$\left.\begin{array}{lll|l} & \text { Surge filter field supply } & \text { Surge filter system } \\ \text { and field supply }\end{array}\right]$

System terminals | Brake chopper terminal

The EL9576 EtherCAT Terminal contains high-performance capacitors for stabilising supply voltages. It can be used in connection with the drive terminals of the EL7xxx series, e.g. the EL70x1 stepper motor terminals, the EL73x2 DC motor terminals or the EL72x1 servomotor terminals.

Low internal resistance and high pulsed current capability enable good buffering in parallel with a power supply unit. Return currents are stored, particularly in the context of drive applications, thereby preventing overvoltages. If the fed back energy exceeds the capacity of the capacitors, the EL9576 switches the load voltage through to the terminal points 1 and 5 . The energy is dissipated by the connection of an external ballast resistor.

The EL9576 is characterised in particular by adjustable threshold values and various diagnostic possibilities.

EL7xxx | Motion terminals
see page 431
Brake chopper terminal,

$$
72 \mathrm{~V}, 155 \mu \mathrm{~F}
$$

Technical data	EL9576 \| ES9576	
Technology	brake chopper	
Diagnostics	temperature on board, over-/undervoltage	
		$\begin{aligned} & \text { Morfor } \\ & 25 \mathrm{~g} \end{aligned}$

The EL9576 buffers the connected voltage via its integrated capacitors and connects the external brake resistor if the preset threshold of the internal voltage is exceeded.

Nominal voltage	arbitrary up to 72 V
Capacity	$155 \mu \mathrm{~F}$
Ripple current (max.)	10 A
Internal resistance	$<5 \mathrm{~m} \Omega$
Chopper voltage	adjustable
Recommended ballast resistor	10Ω, typ. 100 W (dependent on application)
Overvoltage control range	typ. 1 V , parametrisable by CoE data
Ballast resistor clock rate	load-dependent, max. $1 \mathrm{~ms}, 2$-point control
Electrical isolation	$1,500 \mathrm{~V}$ (E-bus/field potential)
Special features	adjustabel threshold
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$
Approvals	CE
Weight	approx. 90 g
Further information	www.beckhoff.com/EL9576

Accessories EtherCAT Terminal

Cordsets and connectors

ZS1090-0003 | EtherCAT/Ethernet RJ45 plug, IP 20, 4-pin, field assembly
2 ZB9010 | Industrial Ethernet/EtherCAT cable for fixed installation, category CAT 5e, 4-wires
3 ZK1090-9191-xxxx | Industrial Ethernet/EtherCAT patch cable
4 ZS1052-3000 | 5 -pin open style connector for CANopen/DeviceNet with integrated termination resistor

ZS1031-3000 | 9-pin D-sub connector
for PROFIBUS (12 Mbaud) with integrated termination resistor

Z1000 | Standard connector for $1000 \mu \mathrm{~m}$ plastic fibre

ZS1090-0008 | Connector set for direct connector assembly for POF cables 8 ZB5200 | DeviceNet cable

10 ZB4200 | Interbus remote bus cable

15 ZS1090-0005 | EtherCAT/Ethernet RJ45 plug, IP 20, 8-pin, for field assembly
16 ZB9020 | Industrial Ethernet/EtherCAT cable, drag-chain suitable
17
ZK1090-6191-0xxx | EtherCAT cable, M12 plug,
straight, d-coded, 4-pin - RJ45 plug, straight

Shielding connection system

18 ZB8520 | Mounting rail holder for 448
19 ZB8510 | Shield busbar $10 \times 3 \mathrm{~mm} \quad 448$

20 ZB8500 | Clamp strap for shield connection with knurled screw
21
ZB8530 | U-clamp terminal up to $4 \mathrm{~mm}^{2}$ for PE connection to the rail
22 ZB8511 | Shield busbar clamp

Motor cables

23 ZK4000-6700-2xxx | Motor cable, shielded,
for AS1000 stepper motors
24
ZK4000-5100-2xxx | Encoder cable for
AS1000 stepper motors
25
ZK4724-0410 | Resolver cable for AM8100 and AM3100 servomotors
26 ZK4704-0411 | Motor cable for AM8100 and
AM3100 servomotors
27
ZK4704-0421 | Motor cable for AM8100
servomotors with OCT

Accessories

| 28 | BZ1xxx, BZ200x \| Marking material, | 447 |
| :--- | :--- | :--- | :--- |
| 29 | contact labels
 BZ3200 \| Insertable label cover, transparent,
 pluggable | 448 |
| 30 | BZ5100 \| Push-in strips for labels | |
| 31 | BG155x \| Bus system housing with mounting | 448 |
| | Bails and holes | 449 |

www.beckhoff.com/EtherCAT-accessories

Note: The pictured products give examples of the wide range of EtherCAT Terminal accessories. For further variants and connection possibilities please see the respective catalog pages.

Cables and connectors for field assembly

EtherCAT cable (copper based)

Pre-assembled cable

The pre-assembled Industrial Ethernet/EtherCAT cables with RJ45 plug enable fast, easy wiring inside the control cabinet and are suitable for short distances on the machine. The robust, industrial quality PUR cables distinguish themselves from office cables by both their mechanical and their EMC characteristics. Further lengths and variants on request.

Technical data	ZK1090-9191-xxxx					A
Cross-section	$4 \times 2 \times$ AWG26/7 $\ldots . .4 \times 2 \times 0.128 \mathrm{~mm}^{2}$					
Cable sheath material	PUR					
Colour	green (RAL 6018)					
Line configuration	SF/UTP (shielded)					
Diameter	sheath: typ. $5.9 \mathrm{~mm} \pm 0.2 \mathrm{~mm}$					
Bending radius	$>5 \times$ diameter					
Category/class	CAT 5, class D					
Operating/installation temperature	$-40 \ldots+75^{\circ} \mathrm{C} /-10 \ldots+60^{\circ} \mathrm{C}$					
Insertion cycles	min. 750					
Ordering information	for pre-assembled EtherCAT/Ethernet patch cables depending on cable lengths					
ZK1090-9191-0001	0.17 m	ZK1090-9191-0030	3.0 m	ZK1090-9191-0200	20.0 m	
ZK1090-9191-0002	0.26 m	ZK1090-9191-0050	5.0 m	ZK1090-9191-0250	25.0 m	
ZK1090-9191-0005	0.5 m	ZK1090-9191-0055	5.5 m	ZK1090-9191-0300	30.0 m	
ZK1090-9191-0010	1.0 m	ZK1090-9191-0060	6.0 m	ZK1090-9191-0350	35.0 m	
ZK1090-9191-0012	1.25 m	ZK1090-9191-0070	7.0 m	ZK1090-9191-0400	40.0 m	
ZK1090-9191-0015	1.5 m	ZK1090-9191-0080	8.0 m	ZK1090-9191-0450	45.0 m	
ZK1090-9191-0017	1.75 m	ZK1090-9191-0090	9.0 m	ZK1090-9191-0500	50.0 m	
ZK1090-9191-0020	2.0 m	ZK1090-9191-0100	10.0 m			
ZK1090-9191-0025	2.5 m	ZK1090-9191-0150	15.0 m			

Cables sold by the metre and connectors

Ordering information	Industrial Ethernet/EtherCAT cable	
ZB9010	Industrial Ethernet/EtherCAT cable, fixed installation, CAT 5e, 4 wires, SF/UTP	
ZB9020	Industrial Ethernet/EtherCAT cable, drag-chain suitable, CAT 5e, 4 wires, SF/UTP	
ZB903x	Industrial Ethernet/EtherCAT cable, for M8 wiring, SF/UTP, AWG 26, see page	
		514
Ordering information		Pict.
ZS1090-0003	RJ45 plug EtherCAT/Ethernet, IP 20, 4-pin, field assembly, AWG22-24, PU = 10	B
ZS1090-0005	RJ45 plug EtherCAT/Ethernet, IP 20, 8-pin, supports Gbit, field assembly, AWG22-26, PU =10	C

EtherCAT cable (fibre optic)

Pre-assembled cable

Ordering information	for fibre-optic cables for EK1501, EK1521, CU1521, CU1521-0010 (multimode 50/125 $\mu \mathrm{m}$)		
ZK1091-1001-0001	fibre-optic duplex cable, SC connector, 1 m	ZK1091-1001-0010	fibre-optic duplex cable, SC connector, 10 m
ZK1091-1001-0005	fibre-optic duplex cable, SC connector, 5 m		
Further lengths and variants on request			

Cables sold by the metre and connectors

Ordering information	POF fibre-optic for EK1561 and CU1561
Z1190	POF fibre-optic duplex cable $980 / 1000 \mu \mathrm{~m}$ for direct connector assembly, sold by metre, PUR, 2-wire, for POF, drag-chain suitable, red
ZS1090-0008	connector set for direct connector assembly for POF cables, contains 10 connectors and 1 polishing set including sanding gauge and polishing paper

Connectors (spare parts)

Ordering information	for terminals with plug-in wiring level	
ZS2010	10 connectors for KS and ES series, spare part (KS/ES terminals are supplied with connector.)	
Ordering information	for connectors for KM or EM modules, spare part (KM and EM terminals are supplied with connector.)	
ZS2001-0001	1-pin, without LED	ZS2001-0004
ZS2001-0002	1-pin, with LED	ZS2001-0005

Marking material and coding pins

Standard contact signs

The EtherCAT Terminals can be individually labelled with standard contact signs. The marking material is not included in the delivery. Further versions www.beckhoff.com/labelling

Ordering information	for contact labels, unprinted (100 pcs)			D
BZ2000	white	BZ2006	blue	
BZ2002	yellow	BZ2007	orange	
BZ2005	red	BZ2008	light green	
Ordering information	for contact labels, printed (100 pcs)			D
BZ1100	0 V , blue	BZ1107	+, white	
BZ1102	-, blue	BZ1108	PE, light green	
BZ1104	24 V , red	BZ1300	ten of each: $0 \ldots . .7,20$ unprinted	
BZ1106	+, red	BZ1400	two of each: $0001 . . .4849$, wh	
Ordering information	for equipment identification labels $12 \times 7 \mathrm{~mm}$ for Bus Terminals with removable identification section (180 pcs			
BZ3000	unprinted	BZ3010	printed according to customer specification (in Excel file)	

Accessories

Slide-in label covers

The slide-in label covers BZ3200 enable clear labelling of the individual channels or text-based functional description of the EtherCAT Terminals. The labels are inserted in the designated slots. For connecting the individual channels the label cover can be tilted upwards.

Ordering information	
BZ3200	insertable label cover, transparent, pluggable, $11.5 \mathrm{~mm} \times 104.5 \mathrm{~mm}$, packing unit $=50$
BZ5100	push-in strips for labels, A4 sheet, 160 pieces, pre-punched, packing unit $=10$

Coding pins

The coding pins and sockets for KS/ES terminals with pluggable wiring level enable coding between terminal and plug in order to prevent incorrect plug insertion.

Housing and assembly

Shielding connection system

The shielding connection system enables the shielding to be located very close to the terminals of the shielded line, so that interference is reduced to a minimum. A shield busbar for attachment to a mounting rail or a bracket for separate mounting in the control cabinet are available.

Ordering information	Shield busbar with mounting rail holder	Pict.
ZB8500	clamp strap for shield connection with knurled screw, width 11 mm , shield diameter max. 8 mm , packing unit $=10$	G
ZB8510	shield busbar $10 \times 3 \mathrm{~mm}, 1000 \mathrm{~mm}$ galvanised Cu, packing unit $=1$	H
ZB8520	mounting rail holder for shield busbar ($10 \times 3 \mathrm{~mm}$), packing unit $=2$	I
ZB8530	U-clamp terminal up to $4 \mathrm{~mm}^{2}$ for PE connection to the rail ($10 \times 3 \mathrm{~mm}$), packing unit $=20$	
Ordering information	Shield busbar clamps	Pict.
ZB8500	clamp strap for shield connection with knurled screw, width 11 mm , shield diameter max. 8 mm , packing unit $=10$	G
ZB8511	shield busbar clamp $10 \times 3 \mathrm{~mm}$ for 5 Bus Terminals/EtherCAT Terminals 12 mm , packing unit $=10$	J
ZB8530	U-clamp terminal up to $4 \mathrm{~mm}^{2}$ for PE connection to the rail ($10 \times 3 \mathrm{~mm}$), packing unit $=20$	

Bus system housing

The BG1558 and BG1559 housings are especially suitable for the construction of compact I/O stations with a higher protection class (IP 65). The housings are supplied with mounting rails. If desired, the housings can be supplied fully fitted with EtherCAT Terminals, flanges and PG threaded fittings. Further sizes are available on request.

Ordering information	
BG1558	bus system housing $400 \mathrm{~mm} \times 200 \mathrm{~mm} \times 120 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$ with mounting rails and holes
BG1559	bus system housing $600 \mathrm{~mm} \times 200 \mathrm{~mm} \times 120 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$ with mounting rails and holes

Assembly aids

Ordering information

ZB8700
slot screwdriver
assembly tool for pressing the spring force clamps on the coupler and the terminals

EtherCAT demokit

The TC9910-B11x EtherCAT demokit offers a quick introduction into EtherCAT communication. It includes EtherCAT Terminals and a Coupler for testing simple I/O functions. The enclosed CD contains a step-by-step guide and a full version of TwinCAT 2 as programming environment for
the Beckhoff EtherCAT master. The demokit consists of: EtherCAT slaves of any type can be tested with this fieldproven EtherCAT master. It also includes a comprehensive help collection that facilitates familiarisation with Beckhoff ADS communication and programming according to IEC 61131-3.

- EK1100 EtherCAT Coupler
- 2 digital input terminals 24 V DC
- 2 digital output terminals 24 V DC
- Beckhoff product folder
- Beckhoff TwinCAT CD
- "TwinCAT Quickstart" documentation

Ordering information

TC9910-B110
EtherCAT demokit, with TwinCAT 2 PLC license
TC9910-B111
EtherCAT demokit, without TwinCAT 2 PLC license
TC9910-B112
EtherCAT demokit, without TwinCAT 2 PLC license (1 instead of 2 digital input terminals)

EtherCAT Box

High performance for harsh environments

EtherCAT Box

EtherCAT extends its reach into the IP 67 world

462	EtherCAT Box	512	Accessories
	(industrial housing)		
		512	Product overview
466	Digital input EP1xxx	514	Cables
473	Digital output EP2xxx	522	Connectors
480	Digital combi EP23xx	524	Further accessories
486	Analog input EP3xxx		
491	Analog output EP4xxx		
492	Position measurement EP5xxx		
494	Communication EP6xxx	788	Infrastructure Components
496	Motion EP7xxx		
499	Special functions EP8xxx	788	Junction
500	System EPxxxx	789	Media converter

506	Digital input EQ1xxx
507	Digital output EQ2xxx
508	Digital combi EQ23xx
510	Analog input EQ3xxx

464 EtherCAT Box
(zinc die-cast housing)

466	Digital input ER1xxx
473	Digital output ER2xxx
480	Digital combi ER23xx
486	Analog input ER3xxx
491	Analog output ER4xxx
492	Position measurement ER5xxx
494	Communication ER6xxx
496	Motion ER7xxx
499	Special functions ER8xxx

Product overview EtherCAT Box

EtherCAT Box | Digital I/O

EPxxxx: industrial housing in IP 67, EQxxxx: stainless steel housing in IP 69K, ERxxxx: zinc die-cast housing in IP 67

EPxxxx: industrial housing in IP 67, EQxxxx: stainless steel housing in IP 69K, ERxxxx: zinc die-cast housing in IP 67

The EtherCAT Box

High performance, compact and waterproof design

Robust

Robust construction allows fieldbus modules to be fitted directly to machines. Control cabinets and terminal boxes are now no longer required.

Sealed

The modules in industrial housing meet the protection class IP 65, IP 66 and IP 67, are fully casted and thus ideally prepared for use in wet, dirty and dusty working environments. For use in extreme, corrosive industrial environments, modules in stainless steel housing in IP 69K protection are available. For harsh industrial and process environments the modules with zinc die-cast housing offer enhanced load capacity and protection e.g. against weld spatter.

Small

The modules are extremely small and are thus suitable for use in applications where there is very little space available. The low weight of the EtherCAT Box modules makes them useful in applications where the I/O interface is in motion (e.g. on a robot arm).

Ultra high-speed

The EtherCAT Box modules have a direct EtherCAT port. Virtually all sensors and actuators can be connected to the control system directly via the 100BASE-TX. XFC boxes are available for additional requirements, e.g. timestamp inputs.

Quickly wired

The wiring of EtherCAT and of signals is significantly simplified through the use of pre-assembled cables. Wiring errors are minimised and the system setup is finished quickly.

Flexible

In addition to the pre-assembled cables, field wireable connectors and cables are also available for maximum flexibility.

Economical

Combined I/O modules and fine signal granularity lead to low system costs you only have to buy what you really need. Due to the doubling of the number of channels per EtherCAT Box, the 16-channel series also saves time and costs with both the EtherCAT cabling and the power cabling.

Complete

The wide variety of signal types allows the connection of almost any kind of sensor or actuator. The communication modules enable decentralised connection of, e.g., label printers, identification systems or special equipment. Stepper Motor Box modules are also available.

Fitting

Sensors and actuators are connected through screw type connectors (M8 or M12). The screw type connectors offer the advantage of high resistance to being pulled out.

Compatible

The EtherCAT Box devices behave very much like the Beckhoff EtherCAT Terminals - this means that the ideal distributed peripheral device can be used, whatever the particular application.

For extreme climatic zones

$+60^{\circ} \mathrm{C}$ The majority of the EtherCAT Box $-25^{\circ} \mathrm{C}$ modules are approved for the extended temperature range of $-25 \ldots+60^{\circ} \mathrm{C}$ (storage temperature $-40 \ldots+85^{\circ} \mathrm{C}$).

The EtherCAT Box modules have an integrated direct EtherCAT interface and can be connected directly to an EtherCAT network. Conventional fieldbuses such as PROFIBUS or CANopen are connected via Coupler Box modules (see chapter Fieldbus Box, page 696).

EtherCAT topology and system description see page 284

Infrastructure Components in IP 67 see page 788

Technical data

EtherCAT Box (industrial and zinc die-cast housing)

Technical data	$8 \times \mathrm{M} 8,4 \times \mathrm{M} 12$	$16 \times \mathrm{M} 8,8 \times \mathrm{M} 12$	7/8" infeed
Dimensions (W x H x D	$30 \mathrm{~mm} \times 126 \mathrm{~mm} \times 26.5 \mathrm{~mm}$	$60 \mathrm{~mm} \times 126 \mathrm{~mm} \times 26.5 \mathrm{~mm}$	$60 \mathrm{~mm} \times 150 \mathrm{~mm} \times 26.5 \mathrm{~mm}$
Weight	depending on device (typ. 165 g)	depending on device (typ. 250 g)	depending on device (typ. 440 g)
Material	PA6 (polyamide) for EPxxxx or zinc die-cast for ERxxxx		
Installation	2 fixing holes 3 mm diameter for M3	2 fixing holes 3 mm diameter for M3; 2 fixing holes 4.5 mm diameter for M4	2 fixing holes 3 mm diameter for M3; 2 fixing holes 4.5 mm diameter for M4
Operating/storage temperature	$0 \ldots+55^{\circ} \mathrm{C}-25 \ldots+85^{\circ} \mathrm{C}$ (extended temperature range: $-25 \ldots+60^{\circ} \mathrm{C}-40 \ldots+85^{\circ} \mathrm{C}$)		
Vibration resistance	conforms to EN 60068-2-6:1 g (extended range: 5 g)		
Shock resistance	conforms to EN 60068-2-27: 15 g , 11 ms (extended range: $35 \mathrm{~g}, 11 \mathrm{~ms}$); 1000 shocks per direction, 3 axes		
EMC immunity/emission	conforms to EN 61000-6-2/EN 61000-6-4		
Protect. class/installation pos.	IP 65/66/67 (conforms to EN 60529)/variable		
Power infeed/feed through	1 max $=4 \mathrm{~A}$	$\mathrm{mmax}^{\text {a }}$ 4 A	$\operatorname{lmax}^{\prime}=16 \mathrm{~A}$

Technical data

EtherCAT Box (stainless steel housing)

Technical data	$4 \times$ M12	$8 \times \mathrm{M} 12$
Dimensions (W x H x D)	$39 \mathrm{~mm} \times 160 \mathrm{~mm} \times 43 \mathrm{~mm}$	$72 \mathrm{~mm} \times 160 \mathrm{~mm} \times 43 \mathrm{~mm}$
Weight	depending on device (typ. 340 g)	depending on device (typ. 480 g)
Material	stainless steel	
Installation	2 fixing lugs for M5	
Operating/storage temperature	$-25 \ldots+60^{\circ} \mathrm{C} /-40 \ldots+85^{\circ} \mathrm{C}$	
Vibration resistance	conforms to EN 60068-2-6	
Shock resistance	conforms to EN 60068-2-27	
EMC immunity/emission	conforms to EN 61000-6-2/EN 61000-6-4	
Protect. class/installation pos.	IP 69K (according to EN 60529)/variable	
Power infeed/feed through	IMAx $=4 \mathrm{~A}$	

EPxxxx | EtherCAT Box (industrial housing)

EtherCAT. ${ }^{*}$

Watertight and dust-proof, due to protection class IP 65/66/67 (fully potted)

Power supply input

- box supply
- auxiliary voltage

I/O connections

$8 \times \mathrm{M} 8,4 \times \mathrm{M} 12$
(126 x $30 \times 26.5 \mathrm{~mm}$)

16 x M8, $8 \times \mathrm{M} 12$

($126 \times 60 \times 26.5 \mathrm{~mm}$)

Connector M8,

 screw type, 3-pinConnector M12, screw type, 5-pin

The robust design of the EtherCAT Box modules enables them to be used directly at the machine. Control cabinets and terminal boxes are now no longer required. The modules are fully sealed and therefore ideally prepared for wet, dirty or dusty conditions. Pre-assembled cables significantly simplify EtherCAT and signal wiring. Commissioning is optimised. In addition to pre-assembled EtherCAT, power and sensor cables, field-configurable connectors and cables are available for maximum flexibility. Depending on the application, the sensors and actuators are connected via M8 or M12 screwtype connectors or D-sub plugs.

The EtherCAT modules cover the typical range of requirements for IP 67 I/O signals: digital inputs with different filters
(3.0 ms or $10 \mu \mathrm{~s}$), digital outputs with 0.5 and 2 A output current, combination modules with freely selectable inputs or outputs, analog inputs and outputs with 16-bit resolution, thermocouple and RTD inputs, and stepper motor modules. XFC (eXtreme Fast Control) modules, including inputs with timestamp, are also available. The availability of XFC EtherCAT Box modules enables a wide range of new applications that were not possible in the past with an IP 67 module.

In addition, various EtherCAT Box modules are available for system tasks, e.g. media converters, EtherCAT hubs or power distribution.

ERxxxx | EtherCAT Box (zinc die-cast housing)

EtherCAT. ${ }_{*}^{*}$

I/O connections

$8 \times \mathrm{M} 8,4 \times \mathrm{M} 12$
$(126 \times 30 \times 26.5 \mathrm{~mm})$
$16 \times \mathrm{M} 8,8 \times \mathrm{M} 12$
($126 \times 60 \times 26.5 \mathrm{~mm}$)
freely configurable digital inputs or outputs. In addition, analog input modules for current/voltage measurement are available. Temperature measurement modules, serial interfaces, encoder inputs and motion modules complement the product range. The modules are available in a slim 30 mm or the broader 60 mm format with different channel options, covering a wide I/O range. Signals can be connected via M8 or M12 connectors.

The modules of the ER series have an EtherCAT interface. Power supply and transmission takes place via M8 connectors or sockets. For high-current outputs, modules with 7/8" power supply and M12 EtherCAT sockets are available.

The EtherCAT Box system is complemented by the ERxxxx modules with zinc die-cast housing. The housing shape of the ER series modules is identical to the plastic housings of the EP series. The zinc die-cast housing makes the IP 67 modules particularly robust, so that they are ready for use in harsh industrial and process environments. With the fully sealed design and metal surfaces the ER series is ideal for applications requiring enhanced load capacity and protection against weld spatter, for example. The ER series is the optimum complement to the plastic and stainless steel housing versions. All modules are compatible.

The EtherCAT Box modules with zinc die-cast housing cover the typical I/O signals: digital inputs with various filters, digital outputs with 0.5 A output current, and combi modules with

Connector M8,

 screw type, 3-pinConnector M12, screw type, 5-pin

Digital input | 24 V DC

The digital inputs on a 24 V supply are among the most frequently used signals. The EN 61131-2 standard describes the input characteristic and differentiates between three types. Type 1 has a low input current with low power loss. This input is optimised for mechanical switches and actively switched electronic outputs. Type 2 has a significantly higher input current and is optimised for 2-wire sensors with high quiescent current consumption. When switched on, however, the current consumption of this input is high and the associated power loss is generally inacceptable. Type 3 is a mixture of type 1 with low current when switched on and a sufficiently high quiescent current for most modern 2-wire sensors. The type 3 input can be used in nearly all applications in place of type 1. The diagram shows the typical current/voltage curves of the inputs of the modules and the permissible range of the standard conformity.

The input circuits differ in their filter function. The task of the filtering is to suppress electromagnetic interference. It is opposed by the disadvantage of signal delay. The filter time of 3 ms is comparatively slow, but it can suppress the bouncing of a mechanical switch and supplies a stable signal for simple PLC applications. Filter times of $10 \mu \mathrm{~s}$ are suitable for applications with the shortest possible reaction times and can only be used for mechanical switches to a limited extent.

8-channel digital input,
24 V DC, M8, type $1 / 3$,
positive switching

Industrial housing Zinc die-cast housing	EP1008-0001 ER1008-0001	EP1018-0001 ER1018-0001	
Connection technology	M8, screw type		
Specification	EN 61131-2, type 1/3		
Input filter	3.0 ms	$10 \mu \mathrm{~s}$	
Number of inputs	8		
			$\begin{aligned} & 0^{+60^{\circ} \mathrm{C}} \\ & ت^{-25^{\circ} \mathrm{C}} \\ & \mathrm{pm} / \mathrm{f}_{\mathrm{m}} \\ & 35 \mathrm{~g} \end{aligned}$

The EP1008/ER1008 and EP1018/ER1018 EtherCAT Box modules with digital inputs acquire the binary control signals from the process level and transmit them, in an electrically isolated form, to the controller. The signals are connected via M8 screw type connectors.

The sensors are supplied from the box supply voltage Us. The auxiliary voltage U_{p} is not used in the input module, but may be connected in order to be relayed downstream.

Nominal voltage	24 V DC $(-15 \% /+20 \%)$
Counting frequency	EtherCAT
Protocol	EtherCAT
Bus interface	$2 \times \mathrm{M} 8$ socket, shielded, screw type
Distributed clocks	-
Sensor supply	from control voltage, max. 0.5 A total, short-circuit-proof
Current consumption from	120 mA
Us (without sensor current)	500 V
Electrical isolation	-
Special features	$-25 \ldots+60{ }^{\circ} \mathrm{C}$
Operating temperature	EP10x8: CE, UL, Ex; ER10x8: CE, UL
Approvals	www.beckhoff.com/EP1008 www.beckhoff.com/ER1008
Further information	

Digital input | 24 V DC

Pulses often need to be captured in technical control applications. This can be done with fast inputs such as the EP1018 and a central pulse counter. If the pulse length is the order of magnitude of the control cycle time or less, the controller cannot record these signals correctly any more. Pre-processing counter modules can then be used to count the number and direction of the pulses, which enables the controller to determine reliable values. The counter is adapted to the individual requirements, such as up/down counter or Gate/Latch-controlled, by fieldbus parameterisation. With a counting depth of 32 bit any overflow can be controlled reliably, even at high frequencies.

The multi-functional EP1518/ER1518 EtherCAT Box supports the following operating modes:

- 1×32 bit up/down counter (the counting direction is specified via the input)
- 1×32 bit gated counter (the counter is enabled via the input)
- 2×32 bit forward counter (no direction detection)

2-channel up/down counter
24 V DC, 1 kHz, 32 bit,
adjustable input filters
$0 . . .100 \mathrm{~ms}, \mathrm{M} 12$

Industrial housing Zinc die-cast housing	EP1518-0002 ER1518-0002
Connection technology	M12, screw type
Specification	EN 61131-2, type 1/3
Input filter	adjustable 0... 100 ms
Number of inputs	8,2 of which can be used as 32 bit up/down counters
	$\begin{aligned} & \operatorname{lo}^{+60^{\circ} \mathrm{C}} \\ & \mathrm{H}^{\circ} \mathrm{C} \\ & \mathrm{Pm} / \mathrm{fm} \\ & 35 \mathrm{~g} \end{aligned}$ 3-wire 2-wire

The EP1518/ER1518 EtherCAT Box with digital inputs acquires binary control signals from the process level and transmits them, in an electrically isolated form, to the controller. The signal state is displayed by light emitting diodes. The signals are connected via M12 screw type connectors. The input filters can be set between 0 and 100 ms via EtherCAT. Inputs 0 and 4 can be used as 32 -bit up/down counters. The sensors are supplied via the control voltage U_{s} in two groups of four sensors each. Any short circuits on the sensor side are detected and reported to the controller. The load voltage U_{p} is not used in the input module, but may optionally be connected in order to be relayed downstream.

Nominal voltage	$24 \mathrm{~V} \mathrm{DC}(-15 \% /+20 \%)$
Counting frequency	max. 1 kHz
Protocol	2 x M8 socket, shielded, screw type
Bus interface	yes
Distributed clocks	from control voltage, max. 0.5 A per 4 sensors, short-circuit-proof
Sensor supply	120 mA
Current consumption from	500 V
Us (without sensor current)	
Electrical isolation	adjustable filters
Special features	$-25 . . .+60{ }^{\circ} \mathrm{C}$
Operating temperature	EP1518: CE, UL, Ex; ER1518: CE, UL
Approvals	www.beckhoff.com/EP1518
Further information	www.beckhoff.com/ER1518

Digital input | 24 V DC, positive switching, D-sub

	16-channel digital input, 24 V DC, D-sub, type $1 / 3$, positive switching	16-channel digital input, 24 V DC, D-sub, type $1 / 3$, positive switching, 2×3-axis accelerometers
Industrial housing	EP1816-0008	EP1816-3008
Connection technology	D-sub socket, 25-pin	D-sub socket, 25-pin
Specification	EN 61131-2, type 1/3	EN 61131-2, type 1/3
Input filter	$10 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$
Number of inputs	16	16
	The EP1816 EtherCAT Box with digital inputs acquires the binary control signals from the process level and transmits them, in an electrically isolated form, to the controller. The signals are connected via 25 -pin D-sub socket. The sensors are supplied from the box supply voltage Us. The auxiliary voltage U_{p} is not used in the input module, but may be connected in order to be relayed downstream.	The EP1816-3008 EtherCAT Box with 16 digital inputs acquires the binary control signals from the process level. The state of the signals is indicated by light emitting diodes. The signals are connected via 25-pin D-sub socket. The EtherCAT Box has 2 internal 3-axis accelerometers with 16 bit and a selectable resolution of $\pm 2 \mathrm{~g}, \pm 4 \mathrm{~g}, \pm 8 \mathrm{~g}$ and $\pm 16 \mathrm{~g}$. Possible applications include the recording of vibrations and shocks/oscillations, and furthermore inclination measurements. The sensors are supplied from the box supply voltage U_{s}. Undervoltage detection (U_{s} and U_{p}) is integrated and is signalled to the controller.
Nominal voltage	24 V DC (-15 \%/+20 \%)	24 V DC (-15 \%/+20 \%)
Protocol	EtherCAT	EtherCAT
Bus interface	$2 \times$ M8 socket, shielded, screw type	$2 \times$ M8 socket, shielded, screw type
Distributed clocks	yes	yes
Sensor supply	from control voltage, max. 0.5 A total, short-circuit-proof	from control voltage, max. 0.5 A total, short-circuit-proof
Current consumption from Us (without sensor current)	120 mA	120 mA
Electrical isolation	500 V	500 V
Special features	compact design	integrated accelerometers
Operating temperature	$-25 \ldots+60^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$
Approvals	CE, UL	CE, UL
Further information	www.beckhoff.com/EP1816	www.beckhoff.com/EP1816-3008

Digital input | 24 V DC, positive switching

XFC digital input｜ 24 V DC，positive，fast inputs

The EP1258／ER1258 EtherCAT Box with digital inputs acquires the fast binary control signals from the process level and transmits them，in an electrically isolated form，to the controller．The signals are furnished with a timestamp that identifies the time of the last edge change with a resolution of 1 ns．This technology enables signals to be traced exactly over time and syn－ chronised with the distributed clocks across the system．With this technology，machine－wide parallel hardware wiring of digital inputs or encoder signals for synchronisation purposes is often no longer required．In this way，the EP1258 enables responses with equidistant time intervals，largely independent of the bus cycle time．

Nominal voltage	24 V DC（－15 \％／＋20 \％）	24 V DC（－15 \％／＋20 \％）
Protocol	EtherCAT	EtherCAT
Bus interface	$2 \times$ M8 socket，shielded，screw type	$2 \times$ M8 socket，shielded，screw type
Resolution time stamp	1 ns （channel 0／1）	1 ns （channel 0／1）
Precision of time stamp	10 ns （＋input delay）（channel 0／1）	10 ns （＋input delay）（channel 0／1）
Distributed clocks	yes	yes
Distributed clock precision	＜ 100 ns （channel 0／1）	＜ 100 ns （channel 0／1）
Sensor supply	from control voltage，max． 0.5 A total，short－circuit－proof	from control voltage，max． 0.5 A total，short－circuit－proof
Current consumption from U_{s}（without sensor current）	120 mA	120 mA
Electrical isolation	500 V	500 V
Operating temperature	$-25 . . .+60^{\circ} \mathrm{C}$	$-25 . . .+60^{\circ} \mathrm{C}$
Approvals	EP1258：CE，UL，Ex；ER1258：CE，UL	EP1258：CE，UL，Ex；ER1258：CE，UL
Further information	www．beckhoff．com／EP1258 www．beckhoff．com／ER1258	www．beckhoff．com／EP1258 www．beckhoff．com／ER1258

Digital input | TwinSAFE

The EP1908 Safety Module is a digital input module for sensors with potentialfree 24 V DC contacts and has eight failsafe inputs. It conforms to the requirements of IEC 61508:2010 SIL 3 and DIN EN ISO 13849-1:2008 PL e.

For further information on TwinSAFE and the TwinSAFE products see page 966

8-channel digital input module,
TwinSAFE, 24 V DC

| Industrial housing | EP1908-0002 | |
| :--- | :--- | :--- | :--- |
| Connection technology | M12, screw type | |
| Safety standard | IEC 61508:2010 SIL 3 and DIN EN ISO 13849-1:2008 PL e | |
| Number of inputs | 8 | |

The EP1908 TwinSAFE EtherCAT Box has eight fail-safe inputs.

Protocol	TwinSAFE/Safety over EtherCAT
Nominal voltage	$24 \mathrm{~V} \mathrm{DC}(-15 \% /+20 \%)$
Current consumption from $\mathrm{U}_{\text {s } / \mathrm{L}_{\mathrm{p}}}$	$80 \mathrm{~mA} / 40 \mathrm{~mA}$
Response time	typ. 4 ms (read input/write to bus)
Fault response time	\leq watchdog time (parameterisable)
Installation position	variable
Special features	8 safe inputs
Operating/storage temperature	$-25 \ldots+60^{\circ} \mathrm{C} /-40 \ldots+85^{\circ} \mathrm{C}$
EMC immunity/emission	conforms to EN 61000-6-2/EN 61000-6-4
Vibration/shock resistance	conforms to EN 60068-2-6/EN 60068-2-27
Approvals	CE, UL, TÜV SÜD
Weight	approx. 165 g
Further information	www.beckhoff.com/EP1908

Digital output | 24 V DC, positive switching

Many actuators are operated or actuated with 24 V DC.
The EtherCAT Box modules in the category "positive switching" switch all output channels to 24 V DC. Beyond that, the output circuit offers functions such as short circuit current limitation, short circuit power-off and the dissipation of inductive energy from the coil.

The most common output circuit supplies a max. continuous current of 0.5 A . Special EtherCAT Box modules are available for higher currents. Any type of load (resistive, capacitive or inductive) can be connected to an output module.

	8-channel digital output, 24 V DC, M8, $\mathrm{I}_{\text {max }}=0.5 \mathrm{~A}$	8-channel digital output, 24 V DC, M12, $\mathrm{I}_{\text {max }}=0.5 \mathrm{~A}$
Industrial housing Zinc die-cast housing	$\begin{aligned} & \text { EP2008-0001 } \\ & \text { ER2008-0001 } \end{aligned}$	$\begin{aligned} & \text { EP2008-0002 } \\ & \text { ER2008-0002 } \end{aligned}$
Connection technology	M8, screw type	M12, screw type
Load type	ohmic, inductive, lamp load	ohmic, inductive, lamp load
Max. output current	0.5 A (short-circuit-proof) per channel	0.5 A (short-circuit-proof) per channel
Number of outputs	8	8
	3-wire 2-wire The EP2008/ER2008 EtherCAT Box with digital outputs connects binary control signals from the controller on to the actuators at the process level. The eight outputs handle load currents of up to 0.5 A . The signals are connected via M8 screw type connectors. The outputs are short-circuit-proof and protected against inverse connection.	3-wire 2-wire The EP2008/ER2008 EtherCAT Box with digital outputs connects binary control signals from the controller on to the actuators at the process level. The eight outputs handle load currents of up to 0.5 A . The signals are connected via M12 screw type connectors. The outputs are short-circuit-proof and protected against inverse connection.
Nominal voltage	24 V DC (-15 \%/+20 \%)	24 V DC (-15 \%/+20 \%)
Current consumption from Us (without sensor current)	120 mA	120 mA
Distributed clocks	-	-
Short circuit current	typ. 1.5 A	typ. 1.5 A
Auxiliary power current	typ. $20 \mathrm{~mA}+$ load	typ. $20 \mathrm{~mA}+$ load
Electrical isolation	500 V	500 V
Special features	-	-
Operating temperature	$-25 \ldots+60^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$
Approvals	EP2008: CE, UL, Ex; ER2008: CE, UL	EP2008: CE, UL, Ex; ER2008: CE, UL
Further information	www.beckhoff.com/EP2008 www.beckhoff.com/ER2008	www.beckhoff.com/EP2008 www.beckhoff.com/ER2008

Digital output | 24 V DC, positive switching

	8-channel digital output, $24 \text { V DC, M8, } \operatorname{lmax}=2 \mathrm{~A}\left(\sum 4 \mathrm{~A}\right)$	8-channel digital output, $24 \mathrm{~V} D C, \mathrm{M} 12, \operatorname{lnax}=2 \mathrm{~A}\left(\sum 4 \mathrm{~A}\right)$
Industrial housing	EP2028-0001	EP2028-0002
Zinc die-cast housing	ER2028-0001	ER2028-0002
Connection technology	M8, screw type	M12, screw type
Load type	ohmic, inductive, lamp load	ohmic, inductive, lamp load
Max. output current	2 A per channel, individually short-circuit safe, total current max. 4A	2 A per channel, individually short-circuit safe, total current max. 4A
Number of outputs	8	8
	The EP2028/ER2028 EtherCAT Box with digital outputs connects binary control signals from the controller on to the actuators at the process level. The eight outputs handle load currents of up to 2 A each, although the total current is limited to 4 A. The signals are connected via M8 screw type connectors. The outputs are short-circuit-proof and protected against inverse connection.	3-wire 2 -wire The EP2028/ER2028 EtherCAT Box with digital outputs connects binary control signals from the controller on to the actuators at the process level. The eight outputs handle load currents of up to 2 A each, although the total current is limited to 4 A . The signals are connected via M12 screw type connectors. The outputs are short-circuit-proof and protected against inverse connection.
Nominal voltage	24 V DC ($-15 \% /+20 \%$)	24 V DC (-15 \%/+20 \%)
Current consumption from U_{s} (without sensor current)	120 mA	120 mA
Distributed clocks	-	-
Short circuit current	max. 7 A	max. 7 A
Auxiliary power current	typ. $20 \mathrm{~mA}+$ load	typ. $20 \mathrm{~mA}+$ load
Electrical isolation	500 V	500 V
Special features	load current up to 2 A	load current up to 2 A
Operating temperature	$-25 . . .+60^{\circ} \mathrm{C}$	$-25 . . .+60^{\circ} \mathrm{C}$
Approvals	EP2028: CE, UL, Ex; ER2028: CE, UL	EP2028: CE, UL, Ex; ER2028: CE, UL
Further information	www.beckhoff.com/EP2028 www.beckhoff.com/ER2028	www.beckhoff.com/EP2028 www.beckhoff.com/ER2028

8-channel digital output, $24 \mathrm{~V} \mathrm{DC}, \mathrm{M} 12, \mathrm{I}_{\max }=2.8 \mathrm{~A}\left(\sum 16 \mathrm{~A}\right)$	8-channel digital output, $24 \mathrm{VDC}, \mathrm{M} 12, \operatorname{lnax}_{\max }=2.8 \mathrm{~A}\left(\sum 16 \mathrm{~A}\right)$
EP2028-0032	ER2028-1032
M12, screw type	M12, screw type
ohmic, inductive, lamp load	ohmic, inductive, lamp load
2.8 A each channel, individually short-circuit-proof, total current max. 16 A	2.8 A each channel, individually short-circuit-proof, total current max. 16 A
8	8
3 -wire 2 -wire The EP2028-0032 EtherCAT Box with digital outputs connects the binary control signals from the controller on to the actuators at the process level. The eight outputs handle load currents of up to 2.8 A each, although the total current is limited to 16 A . The signals are connected via M12 screw type connectors. All outputs are short-circuit-proof and protected against inverse connection.	3-wire 2-wire The ER2028-1032 EtherCAT Box with digital outputs connects the binary control signals from the controller on to the actuators at the process level. The eight outputs handle load currents of up to 2.8 A each, although the total current is limited to 16 A . The signals are connected via M12 screw type connectors. All outputs are short-circuit-proof and protected against inverse connection.
24 V DC (-15 \%/+20 \%)	24 V DC (-15 \%/+20 \%)
130 mA	130 mA
-	-
max. 14 A	max. 14 A
typ. $20 \mathrm{~mA}+$ load	typ. $20 \mathrm{~mA}+$ load
500 V	500 V
1 output per M12 plug, 16 A total current	1 output per M12 plug, 16 A total current
$-25 \ldots+60^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$
CE, UL in preparation	CE, UL in preparation
www.beckhoff.com/EP2028-0032	www.beckhoff.com/ER2028-1032

The EP2028-0032 EtherCAT Box with digital outputs connects the binary control signals from the controller on to the actuators at the process level. outputs handle load curren of 2.8 A each, alhough tons All ouputs ar short-circuit aro onnectors. All outputs are short-circuit-proof and protected against inverse connection.

The ER2028-1032 EtherCAT Box with digital outputs connects the binary control signals from the controller on to the actuators at the process level. er to 2.8 A each, although the tors All outeuts are short ircuit are connectors. All outputs are short-circuit-proof and protected against inverse

24 V DC (-15 \%/+20 \%)
130 mA
max. 14 A
typ. $20 \mathrm{~mA}+$ load
500 V
1 output per M12 plug, 16 A total current
$25 \ldots+60^{\circ} \mathrm{C}$
www.beckhoff.com/ER2028-1032

Digital output | 24 V DC, positive switching

	8-channel digital output, 24 V DC, M8, $\operatorname{lmax}=2 \mathrm{~A}\left(\sum 4 \mathrm{~A}\right)$, with diagnostics	8-channel digital output, 24 V DC, M12, $\mathrm{Imax}^{2}=2 \mathrm{~A}\left(\sum 4 \mathrm{~A}\right)$, with diagnostics
Industrial housing Zinc die-cast housing	$\begin{aligned} & \text { EP2038-0001 } \\ & \text { ER2038-000 } \end{aligned}$	EP2038-0002 ER2038-0002
Connection technology	M8, screw type	M12, screw type
Load type	ohmic, inductive, lamp load	ohmic, inductive, lamp load
Max. output current	2 A per channel, individually short-circuit safe, total current max. 4A	2 A per channel, individually short-circuit safe, total current max. 4A
Number of outputs	8	8
	The EP2038/ER2038 EtherCAT Box with digital outputs connects binary control signals from the controller on to the actuators at the process level. The eight outputs handle load currents of up to 2 A each, although the total current is limited to 4 A . The EP2038 offers output diagnostics in the form of short circuit and open circuit detection per channel. The signals are connected via M8 screw type connectors.	The EP2038/ER2038 EtherCAT Box with digital outputs connects binary control signals from the controller on to the actuators at the process level. The eight outputs handle load currents of up to 2 A each, although the total current is limited to 4 A . The EP2038 offers output diagnostics in the form of short circuit and open circuit detection per channel. The signals are connected via M12 screw type connectors.
Nominal voltage	24 V DC ($-15 \% /+20 \%$)	24 V DC ($-15 \% /+20 \%$)
Current consumption from Us (without sensor current)	120 mA	120 mA
Distributed clocks	-	-
Short circuit current	max. 7A	max. 7 A
Auxiliary power current	typ. $20 \mathrm{~mA}+$ load	typ. $20 \mathrm{~mA}+$ load
Electrical isolation	500 V	500 V
Special features	load current up to 2 A	load current up to 2 A
Operating temperature	$-25 . . .+60^{\circ} \mathrm{C}$	$-25 . . .60^{\circ} \mathrm{C}$
Approvals	CE, UL	CE, UL
Further information	www.beckhoff.com/EP2038 www.beckhoff.com/ER2038	www.beckhoff.com/EP2038 www.beckhoff.com/ER2038

Digital output | 24 V DC, positive switching

	16-channel digital output, $24 \mathrm{~V} D C, \mathrm{M} 16, \operatorname{lmax}^{\mathrm{m}}=0.5 \mathrm{~A}\left(\sum 4 \mathrm{~A}\right)$	16-channel digital output, 24 V DC, D -sub, $\mathrm{Imax}_{\max }=0.5 \mathrm{~A}\left(\sum 4 \mathrm{~A}\right)$
Industrial housing Zinc die-cast housing	EP2816-0004	EP2816-0008
Connection technology	M16, 19-pin	D-sub socket, 25-pin
Load type	ohmic, inductive, lamp load	ohmic, inductive, lamp load
Max. output current	0.5 A each channel, individually short-circuit-proof, total current max. 4 A	0.5 A each channel, individually short-circuit-proof, total current max. 4 A
Number of outputs	16	16
	The EP2816-0004 EtherCAT Box with digital outputs connects the binary control signals from the controller on to the actuators at the process level. The 16 outputs handle load currents of up to 0.5 A each, although the total current is limited to 4 A . An output short-circuit is recognised and passed on to the controller. The signal connection is realised by a 19 -pin M16 socket. All outputs are short-circuit-proof, protected against inverse connection and can be diagnosed.	The EP2816-0008 EtherCAT Box with digital outputs connects the binary control signals from the controller on to the actuators at the process level. The 16 outputs handle load currents of up to 0.5 A each, although the total current is limited to 4 A. An output short-circuit is recognised and passed on to the controller. The signal connection is realised by a 25 -pin D-sub socket. All outputs are short-circuit-proof, protected against inverse connection and can be diagnosed.
Nominal voltage	24 V DC (-15 \%/+20 \%)	24 V DC (-15 \%/+20 \%)
Current consumption from Us (without sensor current)	120 mA	120 mA
Distributed clocks	yes	yes
Short circuit current	max. 1.5 A	max. 1.5 A
Auxiliary power current	typ. $20 \mathrm{~mA}+$ load	typ. $20 \mathrm{~mA}+$ load
Ohmic switching current	-	-
Operat. cycles mech. (min.)	-	-
Operat. cycles electr. (min.)	-	-
Minimum permitted load	-	-
Electrical isolation	500 V	500 V
Special features	ideal for multi-pin connector valve terminals	ideal for multi-pin connector valve terminals
Operating temperature	$-25 \ldots+60^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$
Approvals	CE, UL	CE, UL
Further information	www.beckhoff.com/EP2816	www.beckhoff.com/EP2816

	16-channel digital output, $24 \mathrm{~V} D C, \mathrm{M} 16, \operatorname{lmax}^{\mathrm{m}}=0.5 \mathrm{~A}\left(\sum 4 \mathrm{~A}\right)$	16-channel digital output, 24 V DC, D -sub, $\mathrm{Imax}_{\max }=0.5 \mathrm{~A}\left(\sum 4 \mathrm{~A}\right)$
Industrial housing Zinc die-cast housing	EP2816-0004	EP2816-0008
Connection technology	M16, 19-pin	D-sub socket, 25-pin
Load type	ohmic, inductive, lamp load	ohmic, inductive, lamp load
Max. output current	0.5 A each channel, individually short-circuit-proof, total current max. 4 A	0.5 A each channel, individually short-circuit-proof, total current max. 4 A
Number of outputs	16	16
	The EP2816-0004 EtherCAT Box with digital outputs connects the binary control signals from the controller on to the actuators at the process level. The 16 outputs handle load currents of up to 0.5 A each, although the total current is limited to 4 A . An output short-circuit is recognised and passed on to the controller. The signal connection is realised by a 19 -pin M16 socket. All outputs are short-circuit-proof, protected against inverse connection and can be diagnosed.	The EP2816-0008 EtherCAT Box with digital outputs connects the binary control signals from the controller on to the actuators at the process level. The 16 outputs handle load currents of up to 0.5 A each, although the total current is limited to 4 A. An output short-circuit is recognised and passed on to the controller. The signal connection is realised by a 25 -pin D-sub socket. All outputs are short-circuit-proof, protected against inverse connection and can be diagnosed.
Nominal voltage	24 V DC (-15 \%/+20 \%)	24 V DC (-15 \%/+20 \%)
Current consumption from Us (without sensor current)	120 mA	120 mA
Distributed clocks	yes	yes
Short circuit current	max. 1.5 A	max. 1.5 A
Auxiliary power current	typ. $20 \mathrm{~mA}+$ load	typ. $20 \mathrm{~mA}+$ load
Ohmic switching current	-	-
Operat. cycles mech. (min.)	-	-
Operat. cycles electr. (min.)	-	-
Minimum permitted load	-	-
Electrical isolation	500 V	500 V
Special features	ideal for multi-pin connector valve terminals	ideal for multi-pin connector valve terminals
Operating temperature	$-25 \ldots+60^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$
Approvals	CE, UL	CE, UL
Further information	www.beckhoff.com/EP2816	www.beckhoff.com/EP2816

16-channel digital output,
$24 \mathrm{~V} D C, \mathrm{M} 16, I_{\max }=0.5 \mathrm{~A}\left(\sum 4 \mathrm{~A}\right)$

The EP2816-0004 EtherCAT Box with digital outputs connects the binary control signals from the controller on to the actuators at the process level. The 16 outputs handle load currents of up to 0.5 A each, although the total current is limited to 4 A . An output short-circuit is recognised and passed on to the controller. The signal connection is realised by a 19-pin M16 socket. All outputs are short-circuit-proof, protected against inverse connection and can be diagnosed.

16-channel digital output,
24 V DC, D-sub, $I_{\text {max }}=0.5 \mathrm{~A}\left(\sum 4 \mathrm{~A}\right)$

The EP2816-0010 EtherCAT Box with digital outputs connects the binary control signals from the controller on to the actuators at the process to 0.5 A each, although the total l is limed to 4 A A output short circuit is regnised and passed on to the controler. The signal conection is realised by two 9-pin D-sub sockets. All output are short-circuit-proof, protected against inverse connection and can be diagnosed.

Digital combi | 24 V DC, positive switching

The digital combination modules combine inputs and outputs in one module. The input circuits differ in their filter function. The task of the filtering is to suppress electromagnetic interference. It is opposed by the disadvantage of signal delay. The filter time of 3 ms is comparatively slow, but it can suppress the bouncing of a mechanical switch and supplies a stable signal for simple PLC applications. Filter times of $10 \mu \mathrm{~s}$ are suitable for applications with the shortest possible reaction times and can only be used to a limited extent for mechanical switches.

The output channels supply a max. continuous current of 0.5 A . Special output modules are available for higher currents. Any type of load (resistive, capacitive or inductive) can be connected to an output module. Since lamp loads and capacitive loads are critical due to their high starting currents, they are limited by the output circuits of the modules. This ensures that the upstream circuit breaker does not trip. Inductive loads cause problems when switching off, since high induction voltages develop if the current is interrupted too quickly. An integrated freewheeling diode prevents this voltage peak. However, the current reduces so slowly that malfunctions occur in many control applications. A valve remains open for several milliseconds. The modules represent a compromise between the avoidance of overvoltage and switchoff. They suppress the induction voltage to approx. 24 V DC and achieve switch-off times that roughly correspond to the switchon time of the coil.

In the event of a short circuit, the module switches the corresponding output off and cyclically attempts to switch it on again. This continues until either the short circuit is eliminated or the controller resets the output. The clock frequency depends on the ambient temperature and the loads on the other channels. The specification for the total current must be observed.
$4 x$ digital input $+4 x$ digital output,
$24 \mathrm{VDC}, \mathrm{M} 8, \mathrm{I}_{\max }=0.5 \mathrm{~A}$

Industrial housing Zinc die-cast housing	$\begin{aligned} & \text { EP2308-0001 } \\ & \text { ER2308-0001 } \end{aligned}$	EP2318-0001 ER2318-0001
Connection technology	M8, screw type	
Specification	EN 61131-2, type 1/3	
Input filter	3.0 ms	$10 \mu \mathrm{~s}$
Number of channels	4 inputs +4 outputs	
	The EP2308/ER ules combine one device. The are short-circu The signals are	8/ER2318 EtherCAT Box modand four digital outputs in load currents of up to 0.5 A , ected against inverse polarity. crew type M8 connectors.
Nominal voltage	$24 \text { V DC (}-15 \% /+20 \%)$	
Max. output current	0.5 A per channel, individually short-circuit-proof	
Load type	ohmic, inductive, lamp load	
Sensor supply	from control voltage, max. 0.5 A total, short-circuit-proof	
Short circuit current	typ. 1.5 A	
Auxiliary power current	typ. $20 \mathrm{~mA}+$ load	
Current consumption from Us (without sensor current)	120 mA	
Electrical isolation	500 V	
Special features	-	
Operating temperature	$-25 \ldots+60^{\circ} \mathrm{C}$	
Approvals	EP23x8: CE, UL, Ex; ER23x8: CE, UL	
Further information	www.beckhoff.com/EP2308 www.beckhoff.com/ER2308	

Digital combi | 24 V DC, positive switching

Industrial housing Zinc die-cast housing	EP2316-0003	$\begin{aligned} & \text { EP2338-0001 } \\ & \text { ER2338-0001 } \end{aligned}$	$\begin{aligned} & \text { EP2338-1001 } \\ & \text { ER2338-1001 } \end{aligned}$
Connection technology	connector with spring-loaded system	M8, screw type	
Specification	EN 61131-2, type 1/3	EN 61131-2, type 1/3	
Input filter	$10 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	3.0 ms
Number of channels	8 inputs +8 outputs	8 digital inputs or outputs	
	The EP2316-0003 EtherCAT Box combines eight digital inputs and eight digital outputs in one device. The outputs handle load currents of up to 0.5 A , are short-circuit-proof and protected against inverse polarity. For the signal connection connectors with a spring-loaded system are used, optionally available with 1 or 3 pins. The module is supplied without connectors. Accessories: - ZS2001-0001: connector, 1-pin, without LED - ZS2001-0002: connector, 1-pin, with LED - ZS2001-0004: connector, 3-pin, with LED		
Nominal voltage	24 V DC (-15 \%/+20 \%)	24 V DC (-15 \%/+20 \%)	
Max. output current	0.5 A per channel, individually short-circuit-proof	0.5 A per channel, individually short-circuit-proof	
Load type	ohmic, inductive, lamp load	ohmic, inductive, lamp load	
Sensor supply	from control voltage, max. 0.5 A total, short-circuit-proof	from load supply voltage, max. 0.5 A total, short-circuit-proof	
Short circuit current	typ. 1.5 A	typ. 1.5 A	
Auxiliary power current	typ. $20 \mathrm{~mA}+$ load	typ. $20 \mathrm{~mA}+$ load	
Current consumption from U_{s} (without sensor current)	120 mA	120 mA	
Electrical isolation	500 V	500 V	
Special features	IP 20, ideal for e.g. operating desks	-	
Operating temperature	$-25 \ldots+60^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$	
Approvals	CE	EP2338: CE, UL, Ex; ER2338: CE, UL	
Further information	www.beckhoff.com/EP2316-0003	www.beckhoff.com/EP2338 www.beckhoff.com/ER2338	

Digital combi | 24 V DC, positive switching

Industrial housing Zinc die-cast housing	$\begin{aligned} & \text { EP2339-0021 } \\ & \text { ER2339-0021 } \end{aligned}$	EP2339-0022 ER2339-0022
Connection technology	M8, screw type	M12, screw type
Specification	EN 61131-2, type 1/3	EN 61131-2, type 1/3
Input filter	3.0 ms	3.0 ms
Number of channels	16 digital inputs or outputs	16 digital inputs or outputs
	The EP2339/ER2339 EtherCAT Box has 16 digital channels, each of which can optionally be operated as an input or as an output. A configuration for using a channel as input or output is not necessary; the input circuit is internally connected to the output driver, so that a set output is displayed automatically in the input process image. The outputs handle load currents of up to 0.5 A (the total current is limited to 4 A). They are short-circuit-proof and protected against inverse polarity. The signals are connected via M8 screw type connectors.	3 -wire 2 -wire The EP2339/ER2339 EtherCAT Box has 16 digital channels, each of which can optionally be operated as an input or as an output. A configuration for using a channel as input or output is not necessary; the input circuit is internally connected to the output driver, so that a set output is displayed automatically in the input process image. The outputs handle load currents of up to 0.5 A (the total current is limited to 4 A). They are short-circuit-proof and protected against inverse polarity. The signals are connected via M12 screw type connectors.
Nominal voltage	24 V DC (-15 \%/+20 \%)	24 V DC (-15 \%/+20 \%)
Max. output current	0.5 A each channel, individually short-circuit-proof, total current max. 4 A	0.5 A each channel, individually short-circuit-proof, total current max. 4 A
Load type	ohmic, inductive, lamp load	ohmic, inductive, lamp load
Sensor supply	from load supply voltage, max. 0.5 A total, short-circuit-proof	from load supply voltage, max. 0.5 A total, short-circuit-proof
Short circuit current	typ. 1.5 A	typ. 1.5 A
Auxiliary power current	typ. $20 \mathrm{~mA}+$ load	typ. $20 \mathrm{~mA}+$ load
Current consumption from U_{s} (without sensor current)	120 mA	120 mA
Electrical isolation	500 V	500 V
Operating temperature	$-25 . . .+60^{\circ} \mathrm{C}$	$-25 . . .+60^{\circ} \mathrm{C}$
Approvals	CE, UL	CE, UL
Further information	www.beckhoff.com/EP2339 www.beckhoff.com/ER2339	www.beckhoff.com/EP2339 www.beckhoff.com/ER2339

Analog input |-10...+10 V, 0/4... 20 mA , RTD

The EP3162, EP3174/ER3174 and EP3184/ ER3184 EtherCAT Box modules evaluate analog standard signals within the range of $-10 / 0 \mathrm{~V}$ to +10 V or $0 / 4 \mathrm{~mA}$ to 20 mA with 16 -bit resolution. The signal form is separately configurable for each channel. The EP3174/ER3174 and EP3184/ER3184 each have four galvanically connected analog inputs. The EP3162 has two analog inputs with galvanic isolation. The EP3174/ER3174 evaluates the difference between the two input signals Input+ and Input-. These must be referred to the ground potential of the load voltage Up. The DC component does not affect the measurement, as long as it is in the common mode range. The measurement in the EP3184/ER3184 is single-ended and the negative reference potential is fixed to the ground potential of the supply voltage U_{p}. In the EP3162 the supply for each channel is galvanically isolated.

The EP3204/ER3204 analog input module is intended for the direct connection of resistance thermometers. The resistance is measured with a low measuring current, linearised and represented in $0.1^{\circ} \mathrm{C}$. The EtherCAT Box supports 2 -, 3 - and 4 -wire measurement on all four channels. The measurements serve to eliminate or deduct the parasitic resistance of the sensor cable. All inputs are separately configurable for a wide range of sensors, for the three measurement procedures and for the direct measurement of resistance.

EP3174-0092 with TwinSAFE SC

With the aid of the TwinSAFE SC technology it is possible to make use of standard signals for safety tasks in any network or fieldbus. To do this, EtherCAT I/Os from the areas of analog input, postition measurement or communication ($4 \ldots 20 \mathrm{~mA}$, incremental encoder, IO-Link, etc.) are extended by the TwinSAFE SC function. The data from these extended EtherCAT I/Os is fed to the TwinSAFE Logic, where they undergo safety-related multichannel processing.

2-channel analog input,
$-10 / 0 \ldots+10 \mathrm{~V}$ or $0 / 4 \ldots 20 \mathrm{~mA}$, parameterisable, 16 bit,
with galvanic isolation

Industrial housing Zinc die-cast housing	EP3162-0002
Connection technology	M12, screw type
Signal type	-10/0 ... $10 \mathrm{~V} \mid 0 / 4 \ldots 20 \mathrm{~mA}$
Resolution	16 bit (incl. sign)
Conversion time	$\sim 100 \mu \mathrm{~s}$
Number of inputs	2 (single-ended)
	The EP3162 has two analog inputs which can be individually parameterised, so that they process signals either in the $-10 \ldots+10 \mathrm{~V}$ or the $0 / 4 \ldots 20 \mathrm{~mA}$ range. The voltage or input current is digitised with a resolution of 16 bit, and is transmitted (electrically isolated) to the higher-level automation device. The two input channels are single-ended inputs with galvanic isolation. The input filter and therefore the conversion times are configurable in a wide range.
Measuring error	$< \pm 0.3$ \% (relative to full scale value)
Distributed clocks	yes
Sensor types	-
Measuring range	-
Internal resistance	$>200 \mathrm{k} \Omega \mid 85 \Omega$ typ. + diode voltage
Sensor supply	from load supply voltage Up, DC, any value up to 30 V
Current consumption from U_{s} (without sensor current)	120 mA
Special features	galvanic isolation of the channels
Operating temperature	$-25 . . .+60^{\circ} \mathrm{C}$
Approvals	CE, UL
Further information	www.beckhoff.com/EP3162

[^2]

The EP3174/ER3174 and EP3184/ER3184 have four analog inputs which can be individually parameterised, so that they process signals either in the $-10 \ldots+10 \mathrm{~V}$ or the $0 / 4 \ldots 20 \mathrm{~mA}$ range. The voltage or input current is digitised with a resolution of 16 bits, and is transmitted (electrically isolated) to the higher-level automation device. The four input channels have a common, internal ground potential. The input filter/conversion times are configurable in a wide range.

The EP3204/ER3204 with analog inputs allows resistance sensors to be connected directly. Linearisation over the full temperature range is realised with the aid of a microprocessor. The temperature range can be selected freely. The module can also be used for simple resistance measurement. Standard settings: resolution $0.1^{\circ} \mathrm{C}$ in the temperature range of PT100 sensors, 2-wire.

$< \pm 0.3 \%$ (relative to full scale value)			$< \pm 0.5{ }^{\circ} \mathrm{C}$ for PT sensors (further types see documentation)
yes			-
-			PT100, PT200, PT500, PT1000, Ni100, Ni120, Ni1000 resistance measurement (e.g. potentiometer, $10 \Omega . . .1 .2 / 4 \mathrm{k} \Omega$)
-			$-200 \ldots+850^{\circ} \mathrm{C}$ (PT sensors); $-60 \ldots+250^{\circ} \mathrm{C}$ (Ni sensors)
$>200 \mathrm{k} \Omega \mid 85 \Omega$ typ. + diode voltage			-
from load supply voltage $\mathrm{U}_{\mathrm{p}}, \mathrm{DC}$, any value up to 30 V			-
120 mA			120 mA
current or voltage parameterisable ($0 / 4 \ldots 20 \mathrm{~mA},-10 / 0 . . .10 \mathrm{~V}$)			open-circuit recognition
$-25 . . .+60^{\circ} \mathrm{C}$			$-25 . . .+60^{\circ} \mathrm{C}$
EP31x4: CE, UL, Ex; ER31x4: CE, UL			EP3204: CE, UL, Ex; ER3204: CE, UL
www.beckhoff.com/EP3174 www.beckhoff.com/ER3174		www.beckhoff.com/EP3184 www.beckhoff.com/ER3184	www.beckhoff.com/EP3204 www.beckhoff.com/ER3204
i EP3174-0092			
TwinSAFE SC	324		

I For availability status see Beckhoff website at: www.beckhoff.com/EP3174-0092

Analog input | Thermocouple

The EP3314/ER3314 EtherCAT Box enables the measurement of temperature using thermocouples. The measured thermovoltage is linearised in accordance with the characteristic of the respective type and transferred to the controller as a temperature value in $1 / 10^{\circ} \mathrm{C}$ or $1 / 100^{\circ} \mathrm{C}$. The inputs are separately configurable for a wide range of different sensor types. Parasitic thermovoltages arise at the interface of the measuring cable and the module, significantly falsifying the measurement. This error is eliminated by the ZS2000-3712 compensation connector.

4-channel analog input,
thermocouple/mV,
parameterisable, 16 bit

Industrial housing Zinc die-cast housing	EP3314-0002	
Connection technology	M12, screw type	
Signal type	thermocouple	
Resolution	$0.1^{\circ} \mathrm{C}$ per digit	
Conversion time	2.5 s up to 20 ms , see documentation, default: approx. 250 ms	
Number of inputs	4	
		$\begin{aligned} & \text { +60 }{ }^{\circ} \mathrm{C} \\ & \mathrm{~B}^{\circ} \mathrm{C} \\ & \mathrm{Pm} / \mathrm{Pm} \\ & 35 \mathrm{~g} \end{aligned}$

The EP3314/ER3314 with analog inputs permits four thermocouples to be connected directly. The module's circuit can operate thermocouple sensors using the 2-wire technique. Linearisation over the full temperature range is realised with the aid of a microprocessor. The temperature range can be selected freely. Compensation for the cold junction is made through a temperature measurement in the connecting plugs. The EP3314/ER3314 can also be used for mV measurement.

Measuring error	$< \pm 0.3 \%$ for type K (relative to full scale value), further types see documentation
Distributed clocks	-
Sensor types	types J, K, L, B, E, N, R, S, T, U (default setting type K), mV measurement
Measuring range	depending on sensor type; preset value is type K, -100... $+1,370^{\circ} \mathrm{C}$
Current consumption from	120 mA
Us (without sensor current)	
Special features	open-circuit recognition
Operating temperature	$-25 \ldots+60^{\circ} \mathrm{C}$
Approvals	EP3314: CE, UL, Ex; ER3314: CE, UL
Further information	www.beckhoff.com/EP3314 www.beckhoff.com/ER3314

XFC analog input | Load cell analysis

The EP3356 EtherCAT Box enables direct connection of a resistor bridge or load cell in a 4-wire connection technology. The ratio between the bridge voltage U_{D} and the supply voltage $U_{\text {Ref }}$ is determined simultaneously in the input circuit and the final load value is calculated as a process value on the basis of the settings in the EP3356. With automatic self-calibration (can be deactivated), dynamic filters and distributed clock support, the EP3356 with measuring cycles of $100 \mu \mathrm{~s}$ can be used for fast and precise monitoring of torque or vibration sensors.

All four M12 sockets are connected, so that parallel operation of several strain gauges is possible.

For further information on XFC
see page $\quad 298$

	1-channel precise load cell analysis (resistor bridge), 24 bit
Industrial housing	EP3356-0022
Connection technology	M12, screw type
Signal type	resistor bridge, strain gauge
Resolution	24 bit, 32 bit presentation
Conversion time	$0.1 \ldots 250 \mathrm{~ms}$, configurable, max. 10,000 samples/s
Number of inputs	2, for 1 resistor bridge in full bridge technology
Measuring error	$< \pm 0,01 \%$ for the calculated load value in relation to the final load value with a 12 V feed and 24 mV bridge voltage (hence nominal strain gauge characteristic value of $2 \mathrm{mV} / \mathrm{V}$), self-calibration active, 50 Hz filter active
Distributed clocks	yes
Sensor types	-
Measuring range	Ud: max. $-25 \ldots+25 \mathrm{mV}$ rated voltage URef: max. $-12 \ldots+12 \mathrm{~V}$ rated voltage
Internal resistance	$>200 \mathrm{k} \Omega$ ($\mathrm{U}_{\text {REF }}$), $>1 \mathrm{M} \Omega$ (U_{D})
Sensor supply	10 V (supplied by the EP3356)
Current consumption from Us (without sensor current)	120 mA
Special features	self-calibration, quadruple averager, dynamic filters, fast data sampling, parallel connection
Operating temperature	$-25 \ldots+60^{\circ} \mathrm{C}$
Approvals	CE, UL
Further information	www.beckhoff.com/EP3356

Analog input | Pressure measuring

The EP3744 EtherCAT Box, equipped with six digital inputs, two digital outputs and four pressure inputs, acquires these signals and transmits them - electrically isolated - to the controller. The signal status is indicated by LEDs; the digital signals are connected via 4-pin M8 plug connectors.

The pressure is measured as the differential pressure to the fifth connection by an integrated 6 mm fitting. The pressure values are available as 16-bit values. Measurement can be made between -1... 1 bar
(EP3744-0041) or $-7 . .7$ bar (EP3744-1041), with the value being output in relation to the fifth connection, e.g. for vacuum measurement in relation to the ambient pressure at suction grippers.

In absolute-pressure mode it is possible to measure pressures between 0... 1 bar (EP3744-0041) or 0... 7 bar (EP3744-1041).

	Pressure measuring box, 6 digital inputs 24 V DC, 2 digital outputs 24 V DC, 0.5 A , 4 pressure inputs $0 \ldots 1$ bar/-1... 1 bar	Pressure measuring box, 6 digital inputs 24 V DC, 2 digital outputs 24 V DC, 0.5 A, 4 pressure inputs $0 \ldots 7$ bar/-7... 7 bar
Industrial housing	EP3744-0041	EP3744-1041
Connection technology	digital signals: 4-pin M8; pressure measurement: 6 mm fitting	digital signals: 4-pin M8; pressure measurement: 6 mm fitting
Signal type	air pressure	air pressure
Conversion time	$\sim 3.5 \mathrm{~ms}$	$\sim 3.5 \mathrm{~ms}$
Number of inputs	6 dig. and 4 pressure inputs, 2 dig. outputs	6 dig. and 4 pressure inputs, 2 dig. outputs
Nominal voltage	24 V DC (-15 \%/+20 \%)	24 V DC (-15 \%/+20 \%)
Sensor types	-	-
Measuring range	$\begin{aligned} & 0 \ldots 1 \text { bar (0...15 psi)/ } \\ & -1 \ldots 1 \text { bar (-15 ... } 15 \text { psi) } \end{aligned}$	$0 . . .7$ bar (0... 100 psi)/ $-7 \ldots 7$ bar (-100... 100 psi)
Sensor supply	from load supply voltage, max. 0.5 A total, short-circuit-proof	from load supply voltage, max. 0.5 A total, short-circuit-proof
Current consumption from Us (without sensor current)	120 mA	120 mA
Special features	direct pressure measuring at the machine	direct pressure measuring at the machine
Operating temperature	$-25 \ldots+60^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$
Approvals	CE, UL	CE, UL
Further information	www.beckhoff.com/EP3744	www.beckhoff.com/EP3744-1041

Analog output |-10...+10 V, 0/4... 20 mA

	4-channel analog output, $-10 / 0 \ldots+10 \mathrm{~V}$ or $0 / 4 \ldots 20 \mathrm{~mA}$, parameterisable, 16 bit	2-channel analog input + 2-channel analog output, $-10 / 0 \ldots+10 \mathrm{~V}$ or $0 / 4 \ldots 20 \mathrm{~mA}$, parameterisable, 16 bit
Industrial housing Zinc die-cast housing	EP4174-0002 ER4174-0002	$\begin{aligned} & \text { EP4374-0002 } \\ & \text { ER4374-0002 } \end{aligned}$
Connection technology	M12, screw type	M12, screw type
Signal type	$-10 / 0 \ldots+10 \mathrm{~V} \mid 0 / 4 \ldots 20 \mathrm{~mA}$	$-10 / 0 \ldots+10 \mathrm{~V} \mid 0 / 4 \ldots 20 \mathrm{~mA}$
Resolution	16 bit	16 bit
Conversion time	$\sim 40 \mu \mathrm{~s}$	input: $\sim 100 \mu \mathrm{~s}$, output: $\sim 40 \mu \mathrm{~s}$
Number of outputs	4	2
Number of inputs	-	2
	The EP4174/ER4174 EtherCAT Box has four analog outputs which can be individually parameterised, so that they generate signals either in the $-10 \ldots+10 \mathrm{~V}$ or the $0 / 4 \ldots 20 \mathrm{~mA}$ range. The voltage or output current is supplied to the process level with a resolution of 15 bit (default), and is electrically isolated. The output scaling can be changed if required. Ground potential for the four output channels is common with the 24 V DC supply. The analog actuators are supplied from the load voltage (freely selectable up to 30 VDC). The applied load voltage is available for actuator supply of further EtherCAT Box modules.	The EP4374/ER4374 EtherCAT Box combines two analog inputs and two analog outputs which can be individually parameterised, so that they process/generate signals either in the $-10 \ldots+10 \mathrm{~V}$ or the $0 / 4 \ldots 20 \mathrm{~mA}$ range. The resolution for the current and voltage signals is 16 bit (signed). The voltage or output current is supplied to the process level with a resolution of 15 bit (default), and is electrically isolated. Ground potential for the two output channels is common with the 24 V DC supply.
Measuring accuracy	<0.1 \% (relative to full scale value)	input: < 0.3 \%, output: < 0.1 \% (each relative to full scale value)
Nominal voltage	24 V DC (-15 \%/+20 \%)	24 V DC (-15 \%/+20 \%)
Distributed clocks	yes	yes
Load	>5 k	output: $>5 \mathrm{k} \Omega \mid<500 \Omega$
Current consumption from U_{s}	120 mA	120 mA
Special features	current or voltage parameterisable per channel	combi module, current or voltage parameterisable per channel
Operating temperature	$-25 \ldots+60^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$
Approvals	EP4174: CE, UL, Ex; ER4174: CE, UL	EP4374: CE, UL, Ex; ER4374: CE, UL
Further information	www.beckhoff.com/EP4174 www.beckhoff.com/ER4174	www.beckhoff.com/EP4374 www.beckhoff.com/ER4374

Position measurement | Incremental encoder interfaces

The EP51x1/ER51x1 EtherCAT Box is an interface for the direct connection of incremental encoders with differential inputs (RS485) (EP5101/ER5101) or 24 V DC inputs (EP5151/ER5151). A 32/16 bit counter with a quadrature decoder and a 32/16 bit latch for the zero pulse can be read, set or enabled. Incremental encoders with alarm outputs can be connected at the EP5101/ER5101's status input. Interval measurement with a resolution of up to 100 ns is possible for EP5101/ ER5101 and EP5151/ER5151. The gate input allows the counter to be halted. The counter state is taken over with a rising edge at the latch input (EP5101-0011). The EP5101-1002/ ER5101-1002 offers a 24 V DC sensor supply.

Due to the optional interpolating microincrement function, the EP5101 can supply even more precise axis positions for dynamic axes. In addition, it supports the synchronous reading of the encoder value together with other input data in the EtherCAT system via high-precision EtherCAT distributed clocks (DC).

The encoder is connected via an 8-pin M12 socket (EP5101-0002, EP5151-0002) or via a 15-pin D-sub socket (EP5101-0011). In the M12 version not all signals are available.

Incremental encoder interface,
M12, 8-pin

Incremental encoder interface, D-sub socket, 15-pin	Incremental encoder interface, M12, 8-pin, 24 V DC sensor supply	Incremental encoder interface, M12, 8-pin
EP5101-0011	EP5101-1002 ER5101-1002	$\begin{aligned} & \text { EP5151-0002 } \\ & \text { ER5151-0002 } \end{aligned}$
D-sub socket, 15-pin	M12, 8-pin	M12, 8-pin
24 V DC (-15 \%/+20 \%)	24 V DC (-15 \%/+20 \%)	24 V DC (-15 \%/+20 \%)
1	1	1
5 V DC	5 V DC	24 V DC
32 or 16 bit, binary	32 or 16 bit, binary	32 or 16 bit, binary
4 million increments/s (with 4-fold evaluation)	4 million increments/s (with 4-fold evaluation)	4 million increments/s (with 4-fold evaluation)
4-fold evaluation	4-fold evaluation	4-fold evaluation
16/32 bit	16/32 bit	16/32 bit
read, set, enable	read, set, enable	read, set, enable
yes	yes	yes
+5 V DC, 150 mA (VCC)	24 V DC, 500 mA (VCC)	24 V DC/0.5 A, short-circuit-proof
typ. $130 \mathrm{~mA}+$ load	typ. $130 \mathrm{~mA}+$ load	typ. $130 \mathrm{~mA}+$ load
500 V	500 V	500 V
$0 \ldots+55^{\circ} \mathrm{C}\left(-25 \ldots+60^{\circ} \mathrm{C}\right.$ in preparation)	$0 \ldots+55^{\circ} \mathrm{C}\left(-25 \ldots+60^{\circ} \mathrm{C}\right.$ in preparation)	$0 \ldots+55^{\circ} \mathrm{C}\left(-25 \ldots+60^{\circ} \mathrm{C}\right.$ in preparation)
CE, UL	CE, UL	CE, UL
www.beckhoff.com/EP5101	www.beckhoff.com/EP5101 www.beckhoff.com/ER5101	www.beckhoff.com/EP5151 www.beckhoff.com/ER5151

Communication | Serial interfaces RS232, RS422/RS485

The EP6001/ER6001 and EP6002/ER6002 serial interface modules allow the connection of devices with an RS232 or RS422/ RS485 interface. The devices connected to the EP600x/ER600x communicate with the automation device via the coupler and the network. The modules transmit the data in a fully transparent manner to the higher-level automation device. The active serial communication channel functions independently of the higher-level bus system in full duplex mode at up to 115,200 baud, while a 864 byte receive buffer and a 128 byte send buffer are available. This way, any desired number of serial interfaces can be used in the application without having to consider structural restrictions in the control device. The serial interface can be positioned close to the place of use, this way reducing the necessary cable lenghts.

The 1-channel version EP6001/ER6001 has an increased end device power supply of up to 1 A , the connector assignment depends on the selected interface. The two integrated digital inputs/outputs allow the connection of additional sensors/actuators in order, for example, to trigger the reading process of the barcode reader or, depending on the result, to initiate an action. In the EP6002/ER6002 the connector assignment depends on the interface. For each channel, RS232 or RS422/RS485 can be selected.

In conjunction with the TwinCAT Virtual Serial COM Driver (see page 963), the EP6001/ER6001 and EP6002/ER6002 can be used as normal Windows COM interfaces.

Nominal voltage	24 V DC (-15 \%/+20 \%)	24 V DC (-15 \%/+20 \%)
Distributed clocks	-	-
Bit distortion	< 3 \%	< 3 \%
Cable length	RS232: max. 15 m; RS422/RS485: approx. 1,000 m	RS232: max. 15 m; RS422/RS485: approx. 1,000 m
Data buffer	864 bytes receive buffer, 128 bytes transmit buffer	864 bytes receive buffer, 128 bytes transmit buffer
Sensor supply	+ 5 V DC, 1 A	+5 V DC, 20 mA each
Current consumption from U_{s} (without sensor current)	typ. $130 \mathrm{~mA}+$ load	typ. $130 \mathrm{~mA}+$ load
Special features	easy integration of serial end devices	easy integration of serial end devices
Operating temperature	$-25 . . .+60^{\circ} \mathrm{C}$	$-25 \ldots+60{ }^{\circ} \mathrm{C}$
Approvals	CE, UL	EP6002: CE, UL, Ex; ER6002: CE, UL
Further information	www.beckhoff.com/EP6001 www.beckhoff.com/ER6001	www.beckhoff.com/EP6002 www.beckhoff.com/ER6002

Communication | IO-Link masters

An IO-Link system consists of IO-Link devices such as sensors, actuators or combinations of both. They are connected using the classic 3-wire technique. The EP6224 performs the IO-Link master function and is equipped with four ports. Only one IO-Link device can ever be connected to each port. IO-Link thus represents a point-topoint communication method and not a fieldbus.

The EP6224 IO-Link module enables connection of up to four IO-Link devices, e.g. actuators, sensors or combinations of both. A point-to-point connection is used between the terminal and the device. The terminal is parameterised via the EtherCAT master. IO-Link is designed as an intelligent link between the fieldbus level and the sensor, wherein parameterisation information can be exchanged bidirectionally via the IO-Link connection. The parameterisation of the IO-Link devices with service data can be done from TwinCAT via ADS.

In the standard setting, the EP6224 functions as a 4-channel input terminal, 24 V DC, which communicates with connected IO-Link devices, parameterises them and, if necessary, changes their operating mode.

Nominal voltage	24 V DC (-15 \%/+20 \%)	24 V DC (-15 \%/+20 \%)
Distributed clocks	-	-
Specification version	IO-Link V1.1, Class A	IO-Link V1.1, Class B
Cable length	max. 20 m	max. 20 m
Sensor supply	24 V DC, 1.4 A , for all 4 ports, port Class A	24 V DC, 1.4 A , for all 4 ports, port Class B (4 A)
Current consumption from U_{s} (without sensor current)	typ. $130 \mathrm{~mA}+$ load	typ. $130 \mathrm{~mA}+$ load
Operating temperature	$\begin{aligned} & 0 \ldots+55^{\circ} \mathrm{C} \\ & \left(-25 \ldots+60^{\circ} \mathrm{C}\right. \text { in preparation) } \end{aligned}$	$\begin{aligned} & 0 \ldots+55^{\circ} \mathrm{C} \\ & \left(-25 \ldots+60^{\circ} \mathrm{C}\right. \text { in preparation) } \end{aligned}$
Approvals	CE, UL	CE, UL
Further information	www.beckhoff.com/EP6224	www.beckhoff.com/EP6224

Motion | Stepper motor modules

Compact Drive Technology see page
858

The EP7041-2002/ER7041-2002, EP7041-3002/ER7041-3002 and EP7041-3102 EtherCAT Box modules are intended for the direct connection of different stepper motors. The PWM output stages for two motor coils with compact design are located in the module together with two inputs for limit switches and cover a wide voltage and current range. The EP7041/ER7041 can be adjusted to the motor and the application by changing just a few parameters. 64-fold micro-stepping ensures particularly quiet and precise motor operation. Connection of an incremental encoder enables a simple servo axis to be realised. Two digital inputs and a digital 0.5 A output enable connection of end switches and a motor brake. The external motor is fed via an integrated plug.

8... 50 V DC	8...50 V DC	
yes	yes	
EtherCAT	EtherCAT	
$2 \times 3.5 \mathrm{~A}, 2 \times 5 \mathrm{~A}$ peak current (overload- and short-circuit-proof)	$2 \times 3.5 \mathrm{~A}, 2 \times 5 \mathrm{~A}$ peak current (overload- and short-circuit-proof)	
1,000, 2,000, 4,000 or 8,000 full steps/s (configurable)	1,000, 2,000, 4,000 or 8,000 full steps/s (configurable)	
64-fold micro stepping	256-fold micro stepping	
approx. 30 kHz	dynamic	
approx. 5,000 positions (per revolution, depending on motor and encoder type)	approx. 5,000 positions (per revolution, depending on motor and encoder type)	
$5 \ldots 24 \mathrm{~V}$ DC, 5 mA , single-ended	$5 \ldots 24 \mathrm{~V}$ DC, 5 mA , single-ended	5 V DC, integrated 5 V DC supply
max. 400,000 increments/s (with 4-fold evaluation)	max. 400,000 increments/s (with 4-fold evaluation)	
120 mA	120 mA	
travel distance control, encoder input, motor supply via plug	for high-speed applications, travel distance control, encoder input, load indication, motor supply via plug	
$-25 \ldots+60^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$	
EP7041: CE, Ex; ER7041: CE	EP7041: CE, Ex; ER7041: CE	
www.beckhoff.com/EP7041-2002 www.beckhoff.com/ER7041-2002	www.beckhoff.com/EP7041-3002 www.beckhoff.com/ER7041-3002	www.beckhoff.com/EP7041-3102

Motion | DC motor output stage

DC motors can replace the considerably more expensive servomotors in many applications if they are operated with an intelligent controller. A DC motor can be integrated very simply into the control system using the EP7342/ER7342 EtherCAT Box. All parameters are adjustable via the fieldbus. The small, compact design and the possibility to fit the modules directly to machines makes the EtherCAT DC motor output stage suitable for a wide range of applications. The output stage is protected against overload and short circuit and offers an integrated feedback system for incremental encoders. Two DC motors can be controlled by one module.

The EP7342/ER7342 EtherCAT Box enables direct operation of two DC motors. The speed or position is specified by the automation device via a 16 bit value. By connection of an incremental encoder, a simple servo axis can be realised. The output stage is protected against overload and shortcircuit.

Nominal voltage	$8 \ldots .50 \mathrm{~V} \mathrm{DC}$
Distributed clocks	yes
Protocol	EtherCAT
Output current	max. $2 \times 3.5 \mathrm{~A}$ (short-circuit-proof, common thermal overload warning for both output stages) per channel
PWM clock frequency	32 kHz with 180° phase shift each
Duty factor	$0 \ldots . .100 \%$ (voltage-controlled)
Resolution	max. 10 bits current, 16 bits speed
Current consumption from	120 mA
Us (without sensor current)	
Special features	travel distance control, encoder input
Operating temperature	$-25 \ldots+60^{\circ} \mathrm{C}$
Approvals	EP7342: CE, Ex; ER7342: CE
Further information	www.beckhoff.com/EP7342
	www.beckhoff.com/ER7342

Special functions | Multi-functional I/O box

The EP8309-1022/ER8309-1022 EtherCAT Box has various digital and analog inputs and outputs: eight digital inputs/outputs, two digital tacho inputs, two analog inputs, one analog output and a 1.2 A PWMi output. The current signals have 12-bit resolution. The tacho outputs supply a speed-dependent velocity or frequency value via digital 24 V sensors. Proportional valves, for example, can be actuated directly using the PWMi output, while intelligent valves are switched by the analog output. With its combination of inputs and outputs, the EP8309-1022/ ER8309-1022 offers a compact solution for the most diverse units that can be controlled over EtherCAT.

System | EtherCAT Box with ID switch, EtherCAT junction

	EtherCAT Box with ID switch	2-port EtherCAT junction, Hot Connect
Industrial housing	EP1111-0000	EP1122-0001
Task within EtherCAT system	identification of any EtherCAT group in the EtherCAT network	coupling of EtherCAT junctions
Data transfer rates	100 Mbaud	100 Mbaud
Protocol	EtherCAT	EtherCAT
	The EP1111 has three decimal ID switches, with which a group of EtherCAT components can be assigned an ID. This group can be present in any position in the EtherCAT network, as a result of which variable topologies and Hot Connect groups can be realised in a simple manner. The EtherCAT connection is established via shielded M8 screw connectors with direct display of link and activity status.	The 2-port EtherCAT junction enables configuration of EtherCAT star topologies. A modular EtherCAT star can be realised by using several EP1122 units in a station. Individual devices or complete EtherCAT strands can be connected at the junction ports. The EtherCAT junctions are connected via shielded M8 screw connectors with direct display of link and activity status. Through TwinCAT and other suitable EtherCAT masters the EP1122 also supports coupling and uncoupling of EtherCAT strands during operation (Hot Connect).
Nominal voltage	24 V DC (-15 \%/+20 \%)	24 V DC (-15 \%/+20 \%)
Distributed clocks	-	-
Bus interface	$2 \times$ M8 socket, shielded, screw type	$2 \times$ M8 socket, shielded, screw type
Number of EtherCAT ports	-	2
Number of configurable IDs	4,096	-
Data transfer medium	EtherCAT cable	EtherCAT cable
Distance between stations	100 m (100BASE-TX)	100 m (100BASE-TX)
Current consumption	typ. 120 mA	typ. 220 mA
Sensor supply	-	-
Operating temperature	$-25 \ldots+60^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$
Approvals	CE, UL	CE, UL, Ex
Further information	www.beckhoff.com/EP1111	www.beckhoff.com/EP1122

System | Power distribution for EtherCAT Box modules

The EP9214-0023 and EP9224-0023 EtherCAT Box modules enable connection of four EtherCAT Box power supply branches. In each 24 V branch the current consumption for the control voltage Us_{s} and the peripheral voltage U_{p} is monitored, limited, and, if necessary, switched off.

The power distribution is supplied via a 7/8" connector with up to 16 A (per voltage supply U_{s} / U_{p}). Several modules can be configured in a cascade arrangement. In the event of a short-circuit in one of the four (eight) outputs, the affected output is switched off. The supply for the other branches remains active. The switch-off and control is done in such a way that the input voltage does not fall below 21 V . During startup consumers with large capacities can be added without problem.

The master can read diagnostic messages from the individual channels via the EtherCAT interface. Independent switching of individual consumer branches is also possible via the EtherCAT master.

With the EP9224-0023 the input voltage and current values of all outputs can be evaluated via the process data. A continuous data \log of the relevant data can be retrieved when an error occurs in order to localise the cause of the error.

	4/4-channel power distribution for EtherCAT	4/4-channel power distribution for EtherCAT Box modules with current measurement/data logging
Box modules		

Accessories see page

System | PROFINET RT EtherCAT Box

The EP9300-0022 EtherCAT Box connects PROFINET RT networks to the EtherCAT Box modules (EPxxxx, EQxxxx and ERxxxx) and converts the telegrams from PROFINET RT to EtherCAT. One station consists of an EP93000022 and any number of EtherCAT Box modules. The box is connected to PROFINET RT via a d-coded M12 socket. In EtherCAT, the PROFINET RT box has at its disposal a lowerlevel, powerful and ultra-fast I/O system with a large selection of EtherCAT Box modules. The EP9300-0022 supports the PROFINET RT profile and fits seamlessly into PROFINET RT networks.

PROFINET RT EtherCAT Box

EQxxxx | EtherCAT Box (stainless steel housing)

EtherCAT. ${ }^{-}$

- auxiliary voltage

Watertight and dust-proof,
due to protection class
IP 69K (fully potted)
Fixing lugs for
screws M5

$8 \times \mathrm{M} 12$

The Beckhoff EtherCAT Box system is complemented by modules in stainless steel design. The modules of the EQxxxx series feature "Hygienic Design" throughout. They can be used in extreme, harsh and corrosive industrial environments and are therefore ideal for applications in the food, chemical or pharmaceutical industries, which require protection class IP 69 K .

The stainless steel EtherCAT Box modules cover the typical range of requirements of I/O signals: digital inputs with a filter of 3.0 ms , digital outputs with 0.5 A output current, and combi modules with freely selectable digital inputs or outputs. In addition, analog input modules for current/voltage measurement
are available. Temperature measurement modules for resistance sensors or thermocouples complement the product range. The signals are connected via M12 connectors.

The modules of the EQxxxx series have an EtherCAT interface. The power supply and transfer takes place via M8 connectors or sockets.

Digital input | 24 V DC, positive switching

Technical data	EQ1008-0002	EQ1809-0022
Connection technology	M12, screw type	M12, screw type
Specification	EN 61131-2, type 1/3	EN 61131-2, type 1/3
Input filter	3.0 ms	3.0 ms
Number of inputs	8	16
	3 -wire 2 -wire The EQ1008 EtherCAT Box with digital inputs acquires the binary control signals from the process level and transmits them, in an electrically isolated form, to the controller. The signals are connected via M12 screw type connectors. The sensors are supplied from the box supply voltage Us. The auxiliary voltage U_{p} is not used in the input module, but may be connected in order to be relayed downstream.	3-wire 2-wire The EQ1809 EtherCAT Box with digital inputs acquires the binary control signals from the process level and transmits them, in an electrically isolated form, to the controller. The signals are connected via M12 screw type connectors. The sensors are supplied from the box supply voltage Us. The auxiliary voltage U_{p} is not used in the input module, but may be connected in order to be relayed downstream.
Nominal voltage	24 V DC (-15 \%/+20 \%)	24 V DC (-15 \%/+20 \%)
Protocol	EtherCAT	EtherCAT
Bus interface	$2 \times$ M8 socket, shielded, screw type	$2 \times$ M8 socket, shielded, screw type
Distributed clocks	-	-
Sensor supply	from load supply voltage, max. 0.5 A total, short-circuit-proof	from load supply voltage, max. 0.5 A total, short-circuit-proof
Current consumption from Us (without sensor current)	130 mA	130 mA
Electrical isolation	500 V	500 V
Operating temperature	$-25 \ldots+60^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$
Approvals	CE, UL	CE, UL
Further information	www.beckhoff.com/EQ1008	www.beckhoff.com/EQ1809

Digital output | 24 V DC, positive switching

	8-channel digital output, 24 V DC, M12, $\mathrm{I}_{\max }=0.5 \mathrm{~A}$	16-channel digital output, 24 V DC, M12, $\mathrm{Imax}_{\operatorname{ma}}=0.5 \mathrm{~A}$
Technical data	EQ2008-0002	EQ2809-0022
Connection technology	M12, screw type	M12, screw type
Load type	ohmic, inductive, lamp load	ohmic, inductive, lamp load
Max. output current	0.5 A each channel, individually short-circuit-proof, total current max. 4 A	0.5 A each channel, individually short-circuit-proof, total current max. 4 A
Number of outputs	8	16
	3-wire 2 -wire The EQ2008 EtherCAT Box with digital outputs connects binary control signals from the controller on to the actuators at the process level. The eight outputs handle load currents of up to 0.5 A . The signals are connected via M12 screw type connectors. The outputs are short-circuit-proof and protected against inverse connection.	3-wire 2-wire The EQ2809 EtherCAT Box with digital outputs connects the binary control signals from the controller on to the actuators at the process level. The 16 outputs handle load currents of up to 0.5 A each, although the total current is limited to 4 A . This makes these modules particularly suitable for applications in which not all of the outputs are active at the same time, or in which not all of the actuators draw 0.5 A current. The signal state is indicated by means of light emitting diodes. The signals are connected via M12 screw type connectors. The outputs are short-circuit-proof and protected against inverse connection.
Nominal voltage	24 V DC (-15 \%/+20 \%)	24 V DC (-15 \%/+20 \%)
Current consumption from Us (without sensor current)	120 mA	130 mA
Distributed clocks	-	-
Short circuit current	typ. 1.5 A	typ. 1.5 A
Auxiliary power current	typ. $20 \mathrm{~mA}+$ load	typ. $20 \mathrm{~mA}+$ load
Electrical isolation	500 V	500 V
Operating temperature	$-25 \ldots+60^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$
Approvals	CE, UL	CE, UL
Further information	www.beckhoff.com/EQ2008	www.beckhoff.com/EQ2809

Digital combi | 24 V DC, positive switching

The EQ2339 EtherCAT Box has 16 digital inputs or outputs in one device. A filter constant of 3.0 ms is available for the inputs. The outputs are short-circuit-proof and protected against inverse polarity. They handle load currents of up to 0.5 A each, although the total current is limited to 4 A . The signals are connected via M12 screw type connectors. The sensors are powered by the load voltage Up.

Nominal voltage	$24 \mathrm{~V} \mathrm{DC}(-15 \% /+20 \%)$
Max. output current	0.5 A each channel, individually short-circuit-proof, total current max. 4 A
Load type	ohmic, inductive, lamp load
Sensor supply	from load supply voltage, max. 0.5 A total, short-circuit-proof
Distributed clocks	-
Short circuit current	typ. 1.5 A
Auxiliary power current	typ. $20 \mathrm{~mA}+$ load
Current consumption from	130 mA
Us (without sensor current)	
Electrical isolation	500 V
Operating temperature	$-25 \ldots+60^{\circ} \mathrm{C}$
Approvals	CE, UL
Further information	www.beckhoff.com/EQ2339

Analog input | $-10 \ldots+10 \mathrm{~V}, 0 / 4 \ldots 20 \mathrm{~mA}$, temperature

The EQ3174 EtherCAT Box evaluates analog standard signals within the range of $-10 / 0 \mathrm{~V}$ to +10 V or $0 / 4 \mathrm{~mA}$ to 20 mA with 16 -bit resolution. The signal form is separately configurable for each channel. The EQ3174 evaluates the difference between the two input signals Input+ and Input-. These must be referred to the ground potential of the load voltage $U_{\text {p }}$. The DC component does not affect the measurement, as long as it is in the common mode range.

The EQ3204 analog input module is intended for the direct connection of resistance thermometers. The resistance is measured with a low measuring current, linearised and represented in $0.1^{\circ} \mathrm{C}$. The EtherCAT Box supports 2-, 3- and 4-wire measurement on all four channels. The measurements serve to eliminate or deduct the parasitic resistance of the sensor cable. All inputs are separately configurable for a wide range of sensors, for the three measurement procedures and for the direct measurement of resistance.

The EQ3314 EtherCAT Box enables the measurement of temperature using thermocouples. The measured thermovoltage is linearised in accordance with the characteristic of the respective type and transferred to the controller as a temperature value in $1 / 10^{\circ} \mathrm{C}$ or $1 / 100^{\circ} \mathrm{C}$. The inputs are separately configurable for a wide range of different sensor types. Parasitic thermovoltages arise at the interface of the measuring cable and the module, significantly falsifying the measurement. This error is eliminated by a compensation connector.

The EQ3174 EtherCAT Box has four analog inputs which can be individually parameterised, so that they process signals either in the $-10 \ldots+10 \mathrm{~V}$ or the $0 / 4 \ldots 20 \mathrm{~mA}$ range. The voltage or input current is digitised with a resolution of 16 bit, and is transmitted (electrically isolated) to the higher-level automation device. The four input channels have differential inputs and have a common, internal ground potential. The input filter and therefore the conversion times are configurable in a wide range.

Measuring error	$< \pm 0.3 \%$ (relative to full scale value)
Distributed clocks	yes
Sensor types	-
Measuring range	$>200 \mathrm{k} \Omega \mid 85 \Omega$ typ. + diode voltage
Internal resistance	from load supply voltage Up, DC, any value up to 30 V
Sensor supply	120 mA
Current consumption from	
Us (without sensor current)	$-25 \ldots+60^{\circ} \mathrm{C}$
Operating temperature	CE, UL
Approvals	$\mathrm{www.beckhoff.com/EQ3174}$
Further information	

4-channel analog input, PT100 (RTD), parameterisable, 16 bit	4-channel analog input, thermocouple/mV, parameterisable, 16 bit
EQ3204-0002	EQ3314-0002
M12, screw type	M12, screw type
PT100	thermocouple
$0.1{ }^{\circ} \mathrm{C}$ per digit	$0.1{ }^{\circ} \mathrm{C}$ per digit
800 ms up to 2 ms , see documentation, default: approx. 85 ms	2.5 s up to 20 ms , see documentation, default: approx. 250 ms
4	4
The EQ3204 EtherCAT Box with analog inputs allows resistance sensors to be connected directly. The module's circuitry can operate the sensors using 2-, 3- or 4-wire connection techniques. Linearisation over the full temperature range is realised with the aid of a microprocessor. The temperature range can be selected freely. The module can also be used for simple resistance measurement. The module's standard settings are: resolution $0.1^{\circ} \mathrm{C}$ in the temperature range of PT100 sensors in 2-wire connection.	The EQ3314 EtherCAT Box with analog inputs permits four thermocouples to be connected directly. The module's circuit can operate thermocouple sensors using the 2 -wire technique. Linearisation over the full temperature range is realised with the aid of a microprocessor. The temperature range can be selected freely. Compensation for the cold junction is made through a temperature measurement in the connecting plugs. This means that standard extension leads can be connected. The EQ3314 can also be used for mV measurement.
$< \pm 0.5^{\circ} \mathrm{C}$ for PT sensors (further types see documentation)	$< \pm 0.3 \%$ for type K (relative to full scale value), further types see documentation
-	-
PT100, PT200, PT500, PT1000, Ni100, Ni120, Ni1000 resistance measurement (e.g. potentiometer, $10 \Omega \ldots 1.2 / 4 \mathrm{k} \Omega$)	types J, K, L, B, E, N, R, S, T, U (default setting type K), mV measurement
$-200 \ldots+850{ }^{\circ} \mathrm{C}$ (PT sensors); $-60 \ldots+250{ }^{\circ} \mathrm{C}$ (Ni sensors)	depending on sensor type; preset value is type $\mathrm{K},-100 \ldots+1,370{ }^{\circ} \mathrm{C}$
-	-
-	-
120 mA	120 mA
$-25 \ldots+60^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$
CE, UL	CE, UL
www.beckhoff.com/EQ3204	www.beckhoff.com/EQ3314

The EQ3204 EtherCAT Box with analog inputs allows resistance sensors to be connected directly. The module's circuitry can operate the sensors using , range is realised with the aid of a microprocessor. The temperature range can be selected freely. The module can also be used for simple resistance measurerange of PT100 sensors in 2-wire connection.

PT100, PT200, PT500, PT1000, Ni100, Ni120, Ni1000 resistance measurement (e.g. potentiometer, $10 \Omega \ldots 1.2 / 4 \mathrm{k} \Omega$)

The EQ3314 EtherCAT Box with analog inputs permits four thermocouples to be connected directly. The module's circuit can operate thermocouple ull temperature can be selected freely. Compensation for the cold junction is made through temperature measurement in the connecting plugs. This means that standard extension leads can be connected. The EQ3314 can also be used for mV measurement.
$< \pm 0.3 \%$ for type K (relative to full scale value),
further types see documentation
types J, K, L, B, E, N, R, S, T, U (default setting type K), mV measurement
depending on sensor type; preset value is type $\mathrm{K},-100 \ldots+1,370^{\circ} \mathrm{C}$
-
$-25 \ldots+60^{\circ} \mathrm{C}$
www.beckhoff.com/EQ3314

Accessories EtherCAT Box

IP 20

IP 67

IP $20 \mid$ EtherCAT

ZK1090-9191-0xxx | RJ45 Industrial Ethernet/
446
EtherCAT patch cable
2
ZS1090-0003 | Ethernet/EtherCAT RJ45 connector,
516
4-pin, IP 20, for field assembly

IP 67 EtherCAT

3

ZK1090-6292-0000 | M12 flange, straight,
d-coded, 4-pin - RJ45 plug, straight

ZK1090-3161-xxxx | M8 plug, straight,
4-pin - M12 plug, straight, 4-pin

ZK1090-3131-xxxx | M8 plug, straight,
4-pin - M8 plug, straight, 4-pin, Highflex
ZK1090-3100-xxxx | M8 plug, straight,
4-pin - open end
ZK1090-3191-xxxx | RJ45 plug, straight,
4-pin - M8 plug, straight, 4-pin
8
ZB9010 | Industrial Ethernet/EtherCAT cable, fixed installation, CAT 5e, 4 wires, SF/UTP

Accessories

Cables

Pre-assembled cables

Accessories for fieldbus components include a wide range of cable assemblies. For clarity, the order numbers are listed without cable length information in the following tables. For detailed ordering information referencing the cable length please see the web pages or the price list.

For technical data sheets see www.beckhoff.com/datasheets

M8 | EtherCAT cable

For highly flexible applications

Ordering information	Sold by the metre
ZB9032	PUR, HIGHFLEX, 4-wire, S/UTP, AWG26, drag-chain suitable, green
Ordering information	AWG26 cable, pre-assembled with M8 plug (4-pin/straight) to
ZK1090-3100-0xxx	open end
ZK1090-3131-0xxx	M8 plug (4-pin/straight)
ZK1090-3132-0xxx	M8 socket (4-pin/straight)
ZK1090-3134-0xxx	M8 socket (4-pin/angled)
ZK1090-3161-0xxx	M12 plug (4-pin/straight), d-coded
ZK1090-3163-0xxx	M12 plug (4-pin/angled), d-coded
ZK1090-3166-0xxx	M12 socket flange (4-pin/straight), d-coded
ZK1090-3191-0xxx	RJ45 plug (straight)
Ordering information	AWG26 cable, pre-assembled with M8 socket (4-pin/straight) to
ZK1090-3200-0xxx	open end
ZK1090-3232-0xxx	M8 socket (4-pin/straight)
ZK1090-3291-0xxx	RJ45 plug (straight)
Ordering information	AWG26 cable, pre-assembled with M8 plug (4-pin/angled) to
ZK1090-3333-0xxx	M8 plug (4-pin/angled)

For flexible applications

Ordering information	Sold by the metre	
ZB9020	PUR, FLEX, 4-wire, SF/UTP, AWG22, CAT 5e, drag-chain suitable, green	
		Pict.
Ordering information	AWG22 cable, pre-assembled with M8 plug (4-pin/straight) to	A
ZK1090-3100-1xxx	open end	B
ZK1090-3131-1xxx	M8 plug (4-pin/straight)	C
ZK1090-3132-1xxx	M8 socket (4-pin/straight)	E
ZK1090-3161-1xxx	M12 plug (4-pin/straight), d-coded	H
ZK1090-3191-1xxx	RJ45 plug (straight)	

For fixed installation

Ordering information	Sold by the metre
ZB9030	PVC, STANDARD, 4-wire, SF/UTP, AWG26, green

M12 | Ethernet/EtherCAT cable

For highly flexible applications

Ordering information	Sold by the metre
ZB9032	PUR, HIGHFLEX, 4-wire, S/UTP, AWG26, drag-chain suitable, green
Ordering information	Cable, d-coded and pre-assembled with M12 plug (4-pin/straight) to
ZK1090-6100-4xxx	open end
ZK1090-6161-4xxx	M12 plug (4-pin/straight), d-coded
ZK1090-6191-4xxx	RJ45 plug (straight)
Ordering information	Cable, d-coded and pre-assembled with M12 socket flange (4-pin/straight) to
ZK1090-6600-4xxx	open end
ZK1090-6292-4xxx	RJ45 plug (straight)

For flexible applications

Ordering information	Sold by the metre
ZB9020	PUR, FLEX, 4-wire, SF/UTP, AWG22, CAT 5e, drag-chain suitable, green

Ordering information	Cable, d-coded and pre-assembled with M12 plug (4-pin/straight) to	Pict.
ZK1090-6100-0xxx	open end	M
ZK1090-6161-0xxx	M12 plug (4-pin/straight), d-coded	N
ZK1090-6166-0xxx	M12 socket flange (4-pin/straight), d-coded	R
ZK1090-6191-0xxx	RJ45 plug (straight)	0
Ordering information	Cable, d-coded and pre-assembled with M12 socket flange (4-pin/straight) to	Pict.
ZK1090-6600-0xxx	open end	P
ZK1090-6292-0xxx	RJ45 plug (straight)	Q
Ordering information	Cable, d-coded and pre-assembled with M12 plug (4-pin/angled) to	Pict.
ZK1090-6300-0xxx	open end	S
ZK1090-6363-0xxx	M12 plug (4-pin/angled), d-coded	

For fixed installation

Ordering information	Sold by the metre
ZB9010	PVC, STANDARD, 4-wire, SF/UTP, AWG22, CAT 5e, green
Ordering information	RJ45 plug (straight)
ZK1090-6191-3xxx	

Ethernet/EtherCAT connectors

Ordering information	RJ45 Ethernet/EtherCAT connectors IP 20 and IP 65/67
ZS1090-0002	RJ45 plug, IP 65/67, 8-pin, AWG24-26
ZS1090-0003	RJ45 plug EtherCAT/Ethernet, IP 20, 4-pin, field assembly, AWG22-24, PU = 10
ZS1090-0005	RJ45 plug EtherCAT/Ethernet, IP 20, 8-pin, supports Gbit, field assembly, AWG22-26, PU = 10
Ordering information	M8 Ethernet/EtherCAT connectors IP 65/67
ZS1090-1006	M8 plug (4-pin/straight), EtherCAT/Ethernet, metal version, IP 65/67, 0D $\leq 6.5 \mathrm{~mm}$
ZS1090-1007	M8 socket (4-pin/straight), EtherCAT/Ethernet, metal version, IP 65/67, OD $\leq 6.5 \mathrm{~mm}$
Ordering information	M12 Ethernet/EtherCAT connectors IP 65/67
ZS1090-0004	M12 plug, d-coded, IP 65/67, AWG18-24
ZS1090-0010	M12 socket, d-coded, IP 65/67, AWG18-24
ZK1090-6292-0000	adapter M12 socket to RJ45 socket (straight)

Illustrations similar

M8｜Power cable

For flexible applications

Ordering information	Sold by the metre
ZB9050	PUR，FLEX，4－wire， $4 \times 0.34 \mathrm{~mm}^{2}$ ，drag－chain suitable，black
Ordering information	Cable，pre－assembled with M8 socket（4－pin／straight）to
ZK2020－3132－0xxx	M8 plug（4－pin／straight）
ZK2020－3200－0xxx	open end，4－wire
Ordering information	Cable，pre－assembled with M8 socket（4－pin／angled）to
ZK2020－3332－0xxx	M8 plug（4－pin／straight）
ZK2020－3334－0xxx	M8 plug（4－pin／angled）
ZK2020－3400－0xxx	open end，4－wire

For fixed installation

Ordering information	Sold by the metre
ZB9051	PVC，STANDARD，4－wire， $4 \times 0.34 \mathrm{~mm}^{2}$, grey
Ordering information	Cable，pre－assembled with M8 socket（4－pin／straight）to（4－pin／straight）
ZK2020－3132－3xxx	open end，4－wire
ZK2020－3200－3xxx	

7/8" | Power cable

For flexible applications $1.5 \mathrm{~mm}^{2}$

Ordering information	Material specification	
ZB9050-0007	TPE-U (PUR), FLEX, 5 -wire, 5×1.5 mm², 5Li 9Y11Y, drag-chain suitable, black	
Ordering information	Cable, pre-assembled with 7/8" socket (5-pin/straight) to	Pict.
ZK2030-1200-0xxx	open end	b
ZK2030-1112-0xxx	7/8" plug (5-pin/straight)	c
Ordering information	Cable, pre-assembled with 7/8" socket (5-pin/angled) to	Pict.
ZK2030-1400-0xxx	open end	d
ZK2030-1314-0xxx	$7 / 8$ " plug (5 -pin/angled)	e
ZK2030-1114-0xxx	7/8" plug (5-pin/straight)	f

For flexible applications $2.5 \mathrm{~mm}^{2}$

Ordering information	Material specification
ZK2031-xxxx-0xxx	TPE-U (PUR), FLEX, 5-wire, $5 \times 2.5 \mathrm{~mm}^{2}, 5$ Li 9Y11Y, drag-chain suitable, black
Ordering information	Cable, pre-assembled with 7/8" socket (5-pin/straight) to
ZK2031-1200-0xxx	open end
Ordering information	Cable, pre-assembled with 7/8" socket (5-pin/angled) to
ZK2031-1400-0xxx	open end

M8 | Sensor cable

For flexible applications

Ordering information	Sold by the metre
ZB9040	PUR, FLEX, 3-wire, $3 \times 0.25 \mathrm{~mm}^{2}$, drag-chain suitable, black

Ordering information	Cable, pre-assembled with M8 plug (3-pin/straight) to	Pict.
ZK2000-2100-0xxx	open end	g
ZK2000-2122-0xxx	M8 socket (3-pin/straight)	h
ZK2000-2124-0xxx	M8 socket (3-pin/angled)	i
ZK2000-2132-0xxx	M8 socket (4-pin/straight)	
ZK2000-2162-0xxx	M12 socket (4-pin/straight)	
ZK2000-2164-0xxx	M12 socket (4-pin/angled)	
Ordering information	Cable, pre-assembled with M8 socket (3-pin/straight) to	
ZK2000-2200-0xxx	open end	
Ordering information	Cable, pre-assembled with M8 plug (3-pin/angled) to	Pict.
ZK2000-2300-0xxx	open end	j
ZK2000-2322-0xxx	M8 socket (3-pin/straight)	k
ZK2000-2324-0xxx	M8 socket (3-pin/angled)	1
ZK2000-2362-0xxx	M12 socket (4-pin/straight)	
ZK2000-2364-0xxx	M12 socket (4-pin/angled)	
Ordering information	Cable, pre-assembled with M8 socket (3-pin/angled) to	Pict.
ZK2000-2400-0xxx	open end	m
Ordering information	Sold by the metre	
ZB9041	PUR, FLEX, 4-wire, $4 \times 0.25 \mathrm{~mm}^{2}$, drag-chain suitable, black	
Ordering information	Cable, pre-assembled with M8 plug (4-pin/straight) to	
ZK2000-3100-0xxx	open end	
ZK2000-3122-0xxx	M8 socket (3-pin/straight)	
ZK2000-3124-0xxx	M8 socket (3-pin/angled)	
Ordering information	Cable, pre-assembled with M8 plug (4-pin/angled) to	
ZK2000-3300-0xxx	open end	
Ordering information	Cable, pre-assembled with DUO M8 plug (4-pin/straight) to	Pict.
ZK2000-3500-0xxx	2 x open cable end, 3 -wire	n
ZK2000-3522-0xxx	$2 \times$ M8 socket (3-pin/straight)	0
ZK2000-3532-0xxx	$2 \times$ M8 socket (4-pin/straight)	p

For fixed installation $3 \times 0.25 \mathrm{~mm}^{2}$

Ordering information	Sold by the metre
ZB9042	PVC, STANDARD, 3-wire, $3 \times 0.34 \mathrm{~mm}^{2}$, grey

For fixed installation $4 \times 0.25 \mathrm{~mm}^{2}$

Ordering information	Sold by the metre
ZB9043	PVC, STANDARD, 4-wire, 4 x $0.25 \mathrm{~mm}^{2}$, grey
Ordering information	Cable, pre-assembled with M8 socket (4-pin/straight) to
ZK2000-3132-3xxx	M8 plug (4-pin/straight)

Accessories

M12 | Sensor cable

For flexible applications

Ordering information	Sold by the metre
ZB9041	PUR, FLEX, 4-wire, $4 \times 0.25 \mathrm{~mm}^{2}$, drag-chain suitable, black
Ordering information	Cable, pre-assembled with M12 plug (4-pin/straight) to
ZK2000-6100-0xxx	open end
ZK2000-6162-0xxx	M12 socket (4-pin/straight)
ZK2000-6164-0xxx	M12 socket (4-pin/angled)
Ordering information	Cable, pre-assembled with M12 socket (4-pin/straight) to
ZK2000-6200-0xxx	open cable end, 4-wire
Ordering information	Cable, pre-assembled with M12 plug (4-pin/angled) to
ZK2000-6300-0xxx	open end
ZK2000-6362-0xxx	M12 socket (4-pin/straight)

Ordering information	Cable, pre-assembled with M12 socket (4-pin/angled) to
ZK2000-6400-0xxx	open cable end, 4-wire
Ordering information	Cable, pre-assembled with M12 plug DUO (4-pin/straight) to
ZK2000-6500-0xxx	$2 \times$ open cable end, 4-wire
ZK2000-6522-0xxx	$2 \times$ M8 socket (3-pin/straight)
ZK2000-6562-0xxx	$2 \times$ M12 socket (4-pin/straight)

For fixed installation

M12 | Sensor cable, shielded

For flexible applications

Accessories

Connectors

For field installation Beckhoff offers a selection of connectors for different cable cross-sections.

M8 | Connectors for field assembly

Plugs

Ordering information	Plugs, 3-pin, field assembly	Pict.
ZS2000-1213	straight version, insulation displacement connection	
ZS2000-2210	straight version, screw type connection	AA
Ordering information	Plugs, 4-pin, field assembly	Pict.
ZS2000-1313	straight version, insulation displacement connection	
ZS2000-2310	straight version, screw type connection	AA
ZS2000-2311	straight version, solder connection	AB
ZS2000-2331	angled version, solder connection	AC

Sockets

M12 | Connectors for field assembly

Plugs

Ordering information	Plugs, 4-pin, field assembly	
ZS2000-1613	straight version, insulation displacement connection, 4 A	Pict.
ZS2000-2610	straight version, screw type connection, 4 A	
ZS2000-2630	angled version, screw type connection, 4 A	AG
ZS2000-6610	straight version, screw type connection, 5 A	AH
		Pict.
Ordering information	Plugs, 4/5-pin, field assembly	AG
ZS2000-2710	straight version, screw type connection	AH
ZS2000-2730	angled version, screw type connection	
ZS2000-6710	straight version, shielded, screw type connection	

Sockets

Ordering information	Sockets, 4-pin, field assembly	Pict.
ZS2000-2620	straight version, screw type connection, 4A	Al
ZS2000-2640	angled version, screw type connection, 4A	AJ
ZS2000-6620	straight version, screw type connection, 5A	
		Pict.
Ordering information	Sockets, 4/5-pin, field assembly	Al
ZS2000-2720	straight version, screw type connection	AJ
ZS2000-2740	angled version, screw type connection	
ZS2000-6720	straight version, shielded, screw type connection	

Illustrations similar

7/8" | Connectors for field assembly

Plugs

Ordering information	Plugs, 5-pin, field assembly
ZS2020-2810	$7 / 8^{\prime \prime}$ plug, straight, field assembly, 5-pin
ZS2020-2830	$7 / 8^{\prime \prime}$ plug, angled, field assembly, 5-pin

Sockets

Ordering information	Sockets, 5-pin, field assembly
ZS2020-2820	$7 / 8^{\prime \prime}$ socket, straight, field assembly, 5-pin
ZS2020-2840	$7 / 8^{\prime \prime}$ socket, angled, field assembly, 5-pin

Special connectors

Ordering information	
ZS2000-3711	M12 plug (5-pin/straight), for small cable cross sections, screw type connection
ZS2000-3712	M12 plug (5-pin/straight) for thermocouples with temperature compensation element, screw type connection
ZS2000-4722	M12 plug (4-pin/straight), splitter to $2 \times$ M12
ZS2000-5911	M23 plug (12-pin/straight version), solder connection
ZS2002-0111	D-sub plug (25-pin/straight version), solder connection

Further accessories EtherCAT Box and Fieldbus Box

Ordering information	Blanking plugs	
ZS5000-0010	blanking plug, plastic (IP 67), for M8 socket, PU $=50$	
ZS5000-0020	blanking plug, plastic (IP 67), for M12 socket, PU $=50$	
ZS5000-0040	blanking plug, plastic (IP 67), for 7/8" socket, PU = 10	
ZS5000-0041	blanking plug, plastic (IP 67), for 7/8" plug, PU = 10	
ZS5000-0050	blanking plug, stainless steel (IP 69K), for M8 socket, PU = 2	
ZS5000-0051	blanking plug, stainless steel (IP 69K), for M12 socket, PU $=4$	
Ordering information	Fieldbus Box set	
ZS5000-0000	Fieldbus Box set M8 (contact labels, blanking plugs)	
ZS5000-0001	Fieldbus Box set 8 mm (contact labels, blanking plugs)	
ZS5000-0002	Fieldbus Box set M12 (contact labels, blanking plugs)	
Ordering information	Torque wrench	
ZB8800	torque wrench for M8 cables with knurl, incl. ratchet	
ZB8800-0001	ratchet, M12, for torque wrench ZB8800	
ZB8800-0002	ratchet, M8 field assembly, for torque wrench ZB8800	
ZB8801-0000	torque wrench for hexagonal plugs, adjustable	
ZB8801-0001	torque cable key, M8/wrench size 9, for torque wrench ZB8801-0000	
ZB8801-0002	torque cable key, M12/wrench size 13, for torque wrench ZB8801-0000	
ZB8801-0003	torque cable key, M12F/wrench size 13, for torque wrench ZB8801-0000	
Ordering information	Mounting and marking material	Pict.
ZS5300-0001	mounting plate for 15 Extension Box or EtherCAT Box modules, stainless steel, 500 mm	AK
ZS5300-0011	mounting plate for 14 small or 7 wide EtherCAT Box modules, stainless steel, 500 mm	
ZS5300-0004	universal mounting bracket for a single small EtherCAT Box, stainless steel, $146 \times 46 \times 76 \mathrm{~mm}$	
BG2000-0000	ATEX protective housing	
ZS5100-0000	marking labels, blank, 4 stripes à 10 pieces	
ZS5100-xxxx	marking labels, customised printing	

Power distribution box

Power distribution box ZS2020-4304

Power distribution box ZS2020-4308

Connector assignment

Connector assignment

Technical data	ZS2020-4304	ZS2020-4308
Number of circuits	4	8
Power supply connection	$7 / 8^{\prime \prime}$ plug, 5-pin	
Circuit connection	M 8, screw type, 4-pin	
Current load	$\mathrm{I}_{\Sigma}=4 \mathrm{~A}$	$30 \mathrm{~mm} \times 126 \mathrm{~mm} \times 31 \mathrm{~mm}$
Dimensions (W x H x D)	$30 \mathrm{~mm} \times 86 \mathrm{~mm} \times 31 \mathrm{~mm}$	
Operating temperature	$-25 \ldots+60^{\circ} \mathrm{C}$	
Storage temperature	$-40 \ldots+85^{\circ} \mathrm{C}$	
Protection class	$\mathrm{IP} 65 / 66 / 67$ (according to EN 60529)	
Installation position	variable	

EtherCAT Plug-in Modules

Bus Terminals for circuit boards

RUN
Ethercat. ${ }^{\boldsymbol{\sim}}$

EtherCAT Plug-in Modules

Efficient I/O solution for large-scale machine production

535	EtherCAT Couplers	540	EtherCAT plug-in modules
			special functions
535	EtherCAT Couplers E-bus		
		540	Motion EJ7xxx
536	EtherCAT plug-in modules		
	digital I/O	541	System modules
536	Digital input EJ1xxx	541	System modules EJ9xxx
537	Digital output EJ2xxx		

| 538 EtherCAT plug-in modules |
| :--- | :--- |
| analog I/O |

538	Analog input EJ3xxx
539	Analog output EJ4xxx

Product overview EtherCAT plug-in modules

EtherCAT plug-in modules | Digital output: EJ2xxx

EtherCAT plug-in modules | Analog input: EJ3xxx

Signal	2-channel		4-channel		8-channel		16-channel
$\pm 10 \mathrm{~V}$			EJ3004	538	EJ3108	538	
			single-ended, 12 bit		$6 \times$ differential inputs,		
					$2 \times$ single-ended, 16 bit		
Resistance	EJ3202	538	EJ3214	538			
thermometer (RTD)	16 bit		16 bit				

EtherCAT plug-in modules \| Analog output: EJ4xxx				
Signal	2-channel		4-channel	
$0 . .10 \mathrm{~V}$	EJ4002	539		
	12 bit			
$\pm 10 \mathrm{~V}$			EJ4134	539
			16 bit	

EtherCAT plug-in modules | Special functions: EJ7xxx

Signal	1-channel		2-channel	
Motion	EJ7047	540	EJ7342	540
	stepper motor module, $l_{\text {max }}=5.0 \mathrm{~A}, 50 \mathrm{~V} \mathrm{DC}$, incremental encoder, vector control		DC motor output stage, 50 V DC, 3.5 A , incremental encoder	
	EJ7211-0010 servomotor module, 50 V DC, 4.5 Arms, OCT	540		

EtherCAT plug-in modules | System: EJ9xxx

| Signal | System |
| :--- | :--- | :--- |
| System | EJ9001 |
| | |
| placeholder module | |
| Signal | Power supply and accessories |
| brake chopper module, up to $72 \mathrm{VDC}, 155 \mu \mathrm{~F}$ | |

EJxxxx | EtherCAT plug-in modules

The EtherCAT I/O plug-in modules are based electronically on the well-known EtherCAT Terminals, and they provide the same broad variety of signals, including functional safety (TwinSAFE). Their electromechanical design enables them to be plugged directly into an application-specific signal distribution board. This routing board distributes signals and power supply to machine modules via prefabricated cables with application-specific plug connectors. The main advantage of the signal distribution board is the highly automated production process, from the manufacture of the circuit board and its assembly through to the inspection. All connector interfaces can be placed on the circuit board according to customer specifications. The connector level, which is matched to the application, considerably optimises the wiring procedure, for example with the use of prefabricated cables and coded plug connectors.

The manufacturing process can be accelerated as far as possible and the risk of wiring errors is minimised. This saves working time and thus costs. It allows production at different worldwide locations with a minimum of risk, since errors are avoided through automation and coding.

The EtherCAT plug-in modules offer an alternative to conventional point-to-point wiring in control cabinets, since they simplify wiring, and reduce the system installation
time and testing costs where machines are manufactured in high numbers.

Compact design for an optimised machine footprint

Similar to the EtherCAT Terminal system, a module strand consists of a Bus Coupler and any desired I/O modules. In contrast to the EtherCAT Terminals, however, the EtherCAT plug-in modules have no springloaded contacts, since the wiring level is implemented differently: for communication, signal distribution and the supply of power to the modules plug connectors on the back side of the modules and the conductive tracks of the signal distribution board are used.

Measuring just $12 \times 55 \times 66 \mathrm{~mm}$, the EJ modules are extremely compact; compared to the EtherCAT Terminals they are almost 50% smaller in relation to volume. In conjunction with coding holes in the signal distribution board, coding pins on the underside of the EJ modules ensure protection against incorrect plug insertion. Thus, the risk of errors can be minimised during assembly and service.

The EtherCAT plug-in modules and the plug level for sensors and actuators can be placed flexibly on the signal distribution board. The signal distribution board is developed either by the user or as custom solution by Beckhoff.

I/O solution for standard applications

The EJ system supplements the modular Beckhoff I/O portfolio for controllers used in medium to high-volume production of standard machines. It is also suitable for applications where the reduction of error probability is critical for the exact replication of a machine. In general, the use of the EJ system is recommended for machine manufacturers who want to create a platform of common parts across their product range. In addition, the EJ system directly addresses projects with a shortage of skilled workers. Especially when production facilities are distributed across various locations with different skill levels, the risk of errors increases along with the complexity of the machines. With the combination of I/O modules, signal distribution board and prefabricated cables, the EJ system offers efficient "Plug \& Work" solutions for machine controllers.

Signal distribution board

The EtherCAT plug-in modules can be directly attached to a PCB. This application-specific PCB (signal distribution board) distributes signals and power supply to individual application-specific plug connectors, in order to connect the controller to further machine modules.

Technical data - EtherCAT plug-in modules

Technical data	EJ1100 coupler	12 mm EJ module	24 mm EJ module
Design form	EtherCAT I/O plug-in modu		
Material	polycarbonate		
Installation	on signal distribution board		
Mechanical coding	EJ plug-in module: signal-s signal distribution board:	pins on the housing, inted circuit board	
Locking	latching lug in circuit board		
Connection method	field wiring: application-sp EJ plug-in module: $2 \times 20-\mathrm{p}$	vel on the signal distributio	
EtherCAT connection	direct	via EJ1100 coupler	via EJ1100 coupler
Electrical isolation	500 V (E-bus/field potenti		
Current supply E-bus	2200 mA	-	-
Bus interface	$2 \times \mathrm{RJ} 45$	-	-
Dimensions (W x H x D)	$44 \mathrm{~mm} \times 66 \mathrm{~mm} \times 55 \mathrm{~mm}$	$12 \mathrm{~mm} \times 66 \mathrm{~mm} \times 55 \mathrm{~mm}$	$24 \mathrm{~mm} \times 66 \mathrm{~mm} \times 5$
Operating/storage temperature	$0 \ldots+55^{\circ} \mathrm{C} /-25 \ldots+85^{\circ} \mathrm{C}$		
Relative humidity	$5 . . .95 \%$, no condensation		
Vibration/shock resistance	conforms to EN 60068-2-6/		
EMC immunity/emission	conforms to EN 61000-6-2	(with corresponding signal	ard)
Protection class/ installation position	EJ module: IP 20/horizonta EJ system: dependent on	on board and housing	

EtherCAT Plug-in Modules

EtherCAT Coupler

The EJ1100 coupler connects EtherCAT with the EtherCAT plug-in modules (EJxxxx). It converts the passing telegrams from Ethernet 100BASE-TX to E-bus signal representation.

The coupler is connected to the network via the upper Ethernet interface. The lower RJ45 socket may be used to connect further EtherCAT devices in the same strand.

Bus interface	$2 \times$ RJ45
Type/number of peripheral signals	max. 4.2 GB addressable I/O points
Data transfer medium	Industrial Ethernet cable (min. CAT 5), shielded
Current consumption from Us	$70 \mathrm{~mA}+\left(\sum\right.$ E-bus current/4)
Current consumption from Up	load
Distance between stations	max. $100 \mathrm{~m}(100 \mathrm{BASE}-\mathrm{TX})$
Delay	typ. $1 \mu \mathrm{~s}$
Power supply	$24 \mathrm{~V} \mathrm{DC} \mathrm{(-15} \mathrm{\% /+20} \mathrm{\%)}$
Current supply E-bus	2200 mA
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$
Approvals	CE
Further information	www.beckhoff.com/EJ1100

Digital input | 24 V DC

ㅍ For availability status see Beckhoff website at: www.beckhoff.com

Digital output | 24 V DC

	8-channel digital output, 24 V DC, 0.5 A	16-channel digital output, 24 V DC, 0.5 A	16-channel digital output, 24 V DC, 0.5 A, negative switching	2-channel pulse width output, 24 V DC, 0.5 A
Technical data	i EJ2008	EJ2809	i EJ2889	EJ2502
Load type	ohmic, inductive, lamp load			
Max. output current	0.5 A (short-circuit-proof) per channel			
Switching times	typ. Tos: $60 \mu \mathrm{~s}$, typ. Toff: $300 \mu \mathrm{~s}$	typ. Ton: $60 \mu \mathrm{~s}$, typ. Toff: $300 \mu \mathrm{~s}$	typ. Ton: $50 \mu \mathrm{~s}$, typ. Toff: $200 \mu \mathrm{~s}$	$\begin{aligned} & \text { Ton: > } 750 \mathrm{~ns}, \\ & \text { Toff: }^{\text {P }} 500 \mathrm{~ns} \end{aligned}$
Number of outputs	8	16	16	2
	The EJ2008 digital output connects the binary control signals from the automation unit on to the actuators at the process level with electrical isolation.	The EJ2809 digital output connects the binary control signals from the automation unit on to the actuators at the process level with electrical isolation.	The EJ2889 digital output connects the binary control signals from the automation unit on to the actuators at the process level with electrical isolation.	The EJ2502 output modulates the pulse width of a binary signal and outputs it electrically isolated from the E-bus.
Nominal voltage	24 V DC (-15 \%/+20 \%)	24 V DC (-15 \%/+20 \%)	24 V DC (-15 \%/+20 \%)	24 V DC ($-15 \% /+20$ \%)
Current consumption E-bus	typ. 110 mA	typ. 110 mA	typ. 130 mA	typ. 110 mA
Distributed clocks	-	-	-	-
Base frequency	-	-	-	$1 . . .20 \mathrm{kHz}, 250 \mathrm{~Hz}$ default
Duty factor	-	-	-	0... 100 \%
Resolution	-	-	-	9... 15 bit
Breaking energy	< $150 \mathrm{~mJ} /$ channel	< $150 \mathrm{~mJ} /$ channel	< $100 \mathrm{~mJ} /$ channel	-
Reverse voltage protection	yes	yes	yes	yes
Short circuit current	typ. < 2 A	typ. <2 A	typ. < 7 A	typ. < 1.5 A
Special features	-	-	negative switching	separate frequency can be set for each channel
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$	0... $+55^{\circ} \mathrm{C}$	0... $+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$
Approvals	CE	CE	CE	CE
Further information	www.beckhoff.com/EJ2008	www.beckhoff.com/EJ2809	www.beckhoff.com/EJ2889	www.beckhoff.com/EJ2502

ㅍ For availability status see Beckhoff website at: www.beckhoff.com

Analog input |-10...+10 V, PT100

	4-channel analog input $-10 \ldots+10 \mathrm{~V}$, 12 bit, single-ended	8-channel analog input $-10 \ldots+10 \mathrm{~V}$, 16 bit, 6 differential and 2 single-ended inputs	2-channel analog input, PT100 (RTD), 16 bit	4-channel analog input, PT100 (RTD), 16 bit
Technical data	EJ3004	i EJ3108	EJ3202	i EJ3214
Resolution	12 bits (16 bits presentation)	16 bit	$0.1{ }^{\circ} \mathrm{C}$ per digit	
Conversion time	typ. 0.625 ms (default setting: 50 Hz filter)		approx. 85 ms default setting, 2... 800 ms configurable	approx. 170 ms default setting
Number of inputs	4 (single-ended)	$\begin{aligned} & 6 \text { (differential) + } \\ & 2 \text { (single-ended) } \end{aligned}$	2	4
	The EJ3004 analog input processes signals in the range between -10 and +10 V .	The EJ3108 analog input processes signals in the range between -10 and +10 V .	The EJ3202 analog input allows resistance sensors to be connected directly.	The EJ3214 analog input allows resistance sensors to be connected directly in 3 -wire connection.
Signal type	-10...+10 V	-10...+10 V	RTD	RTD
Measuring error	$< \pm 0.3 \%$ (relative to full scale value)	$< \pm 0.3 \%$ (relative to full scale value)	$< \pm 0.5{ }^{\circ} \mathrm{C}$ for PT sensors	$< \pm 0.5^{\circ} \mathrm{C}$ for PT sensors, 4x3-wire connection
Current consumption E-bus	typ. 120 mA	typ. 300 mA	typ. 165 mA	typ. 190 mA
Distributed clocks	-	-	-	-
Sensor types	-	-	PT100, PT200, PT500, PT1000, Ni100, Ni120, Ni1000 resistance measurement (e.g. potentiometer, $10 \Omega \ldots 1.2 / 4 \mathrm{k} \Omega$), KTY sensors (types see documentation)	PT100, PT200, PT500, PT1000, Ni100, Ni120, Ni1000 resistance measurement (e.g. potentiometer, $10 \Omega . .1 .2 / 4 \mathrm{k} \Omega$), KTY sensors (types see documentation)
Measuring range	$-10 \ldots+10 \mathrm{~V}$	$-10 \ldots+10 \mathrm{~V}$	$\begin{aligned} & -200 \ldots+850^{\circ} \mathrm{C} \text { (PT sensors); } \\ & -60 \ldots+250^{\circ} \mathrm{C} \text { (Ni sensors) } \end{aligned}$	$\begin{aligned} & -200 \ldots+850^{\circ} \mathrm{C} \text { (PT sensors); } \\ & -60 \ldots+250^{\circ} \mathrm{C} \text { (Ni sensors) } \end{aligned}$
Internal resistance	$>130 \mathrm{k} \Omega$	$>130 \mathrm{k} \Omega$	-	-
Input filter limit frequency	1 kHz	1 kHz	typ. 1 kHz	typ. 1 kHz
Special features	standard and compact process image, switchable measuring data representation, activatable FIR/IIR filters, limit value monitoring, overload display in the process data	standard and compact process image, switchable measuring data representation, activatable FIR/IIR filters, limit value monitoring, overload display in the process data	integrated digital filter, limit value monitoring, variable connection technology	integrated digital filter, limit value monitoring, variable connection technology
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$
Approvals	CE	CE	CE	CE
Further information	www.beckhoff.com/EJ3004	www.beckhoff.com/EJ3108	www.beckhoff.com/EJ3202	www.beckhoff.com/EJ3214

ㅍ For availability status see Beckhoff website at: www.beckhoff.com

Analog output |-10/0...10 V

I For availability status see Beckhoff website at: www.beckhoff.com/EJ4134

Motion | Stepper, servo and DC motor modules

	Stepper motor module 50 V DC, 5 A, with incremental encoder, vector control	Servomotor module with OCT, 50 V DC, 4.5 Arms	2-channel DC motor output stage 50 V DC, 3.5 A
Technical data	EJ7047	- EJ7211-0010	EJ7342
Technology	direct motor connection		
Load type	uni- or bipolar stepper motors	permanent-magnet synchronous motors	DC brush motors, inductive
Max. output current	5 A (overload- and short-circuit-proof)	output current ln : 4.5 A (rms), peak current ln : 9.0 A (rms) for 1 s	2×3.5 A (short-circuit-proof, common thermal overload warning for both output stages) per channel
Number of channels	1 stepper motor, encoder input, 2 digital inputs, 1 output (0.5 A) configurable	1 servomotor, absolute feedback, motor brake, 2 digital inputs	2 DC motors, 2 digital inputs, encoder input
Nominal voltage	8...50 V DC	8...50 V DC	8...50 V DC
Current consumption E-bus	typ. 140 mA	typ. 130 mA	typ. 160 mA
Distributed clocks	yes	yes	yes
Maximum step frequency	$1,000,2,000,4,000$ or 8,000 full steps/s (configurable)	-	-
Step pattern	64-fold micro stepping	-	-
Current controller frequency	double PWM clock frequency	double PWM clock frequency	-
Frequency range	-	0... 599 Hz	-
PWM clock frequency	32 kHz	16 kHz	30 kHz with 180° phase shift each
Duty factor	-	-	$0 . .100$ \% (voltage-controlled)
Control resolution	approx. 5,000 positions in typ. applications (per revolution)	-	max. 10 bits current, 16 bits speed
Encoder signal	$5 . .24 \mathrm{~V}$ DC, 5 mA , single-ended	-	5... 24 V DC, 5 mA , single-ended
Pulse frequency	max. 400,000 increments/s (with 4-fold evaluation)	-	max. 400,000 increments/s (with 4-fold evaluation)
Special features	travel distance control, encoder input, vector control	compact and system-integrated, absolute feedback, One Cable Technology (OCT), plug-and-play	travel distance control, encoder input
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$
Approvals	CE	CE	CE
Further information	www.beckhoff.com/EJ7047	www.beckhoff.com/EJ7211-0010	www.beckhoff.com/EJ7342

I For availability status see Beckhoff website at: www.beckhoff.com/EJ7211-0010

System | Placeholder, brake chopper

	Placeholder module	Brake chopper module, 72 V, $155 \mu \mathrm{~F}$
Technical data	EJ9001	EJ9576
Technology	placeholder module	brake chopper
Diagnostics	-	temperature on board, over-/undervoltage
	The placeholder modules can be plugged into unused slots on the signal distribution board. The slots reserved in such a way can be equipped with functional modules when the range of functions is extended.	The EJ9576 buffers the connected voltage via its integrated capacitors and connects the external brake resistor if the preset threshold of the internal voltage is exceeded.
Nominal voltage	-	arbitrary up to 72 V
Current consumption E-bus	typ. 60 mA	typ. 85 mA
Capacity	-	$155 \mu \mathrm{~F}$
Ripple current (max.)	-	10 A
Internal resistance	-	$<5 \mathrm{~m} \Omega$
Chopper voltage	-	adjustable
Recommended ballast resistor	-	10Ω, typ. 100 W (dependent on application)
Overvoltage control range	-	typ. 1 V , parametrisable by CoE data
Ballast resistor clock rate	-	load-dependent, max. 1 ms , 2-point control
Electrical isolation	500 V (E-bus/field potential)	1,500 V (E-bus/field potential)
Special features	placeholder module for subsequent functional extensions	adjustabel threshold
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$
Approvals	CE	CE
Further information	www.beckhoff.com/EJ9001	www.beckhoff.com/EJ9576

Bus Terminal

The modular fieldbus system for automation

Bus Terminal

Independence from signals and fieldbuses with one system

546
548
554
556
561

System overview
Product overview
System description
Features
Technical data
564 Bus Couplers

EtherCAT BK11x0, BK1250
Lightbus BK2xx0
PROFIBUS BK3xx0, LC3100
Interbus BK40x0
CANopen BK51xx, LC5100
DeviceNet BK52x0, LC5200
ControlNet BK7000
CC-Link BK7150
630 Bus Terminals analog I/O
Modbus BK73x0
SERCOS interface BK75x0
RS232/RS485 BK8x00
Ethernet TCP/IP BK9xx0
PROFINET BK9xx3
EtherNet/IP BK9xx5
USB BK9500

580
582
583
584
585
585
587

PROFIBUS BC31x0, BX3100
CANopen BC5150, BX5100
DeviceNet BC5250, BX5200
Modbus BC7300
RS232/RS485 BC8x50, BX8000
Ethernet TCP/IP BC9xxx, BX9000
688 Accessories

688	Connectors and cables
691	Marking material
693	Demokit
694	Accessories radio technology

674
System terminals

System terminals KL9xxx, KS9xxx
Special terminals KLxxxx, KSxxxx
$590 \quad$ Bus Terminals digital I/O

Digital input KL1xxx, KS1xxx, KM1xxx
606
Digital output KL2xxx, KS2xxx, KM2xxx

966
TwinSAFE

Analog input KL3xxx, KS3xxx, KM37xx
Analog output KL4xxx, KS4xxx, KM4602

special functions

656 Position measurement
KL5xxx, KS5xxx
660 Communication, master terminals KL6xxx, KS6xxx, KM6551
670 Manual operation KL85xx

656	Bus Terminals
	special functions
656	Position measurement KL5xxx, KS5xxx
660	Communication, master terminals KL6xxx, KS6xxx,
	KM6551
670	Manual operation KL85xx
672	Power terminals KL8xxx

System overview Bus Couplers

	Bus Coupler					PLC		
Features	Standard BKxx00	$\begin{array}{\|l\|l} \text { Economy } \\ \text { BKxx10 } \\ \hline \end{array}$	Economy plus BKxx20	$\begin{aligned} & \text { Compact } \\ & \text { BKxx5x } \\ & \hline \end{aligned}$	Low Cost LCxx00	Controller BCxx00	BCxx50	BC9191
Function	fieldbus slave	fieldbus slave, with integrated IEC 61131-3 PLC	fieldbus slave, with integrated IEC 61131-3 PLC	Building Automation Room Controller				
Program memory	-	-	-	-	-	32/96 kbyte	48 kbyte	BC9191: 48 kbyte, BC9191-0100: 128 kbyte
Main memory	-	-	-	-	-	-	-	-
Current supply K-bus	1,750 mA	500 mA	1,750 mA	1,000 mA	500 mA	1,750 mA	1,000 mA	200 mA
Fieldbus connection	plug (design depends on the fieldbus)	direct to the spring-loaded terminals	plug (design depends on the fieldbus)	plug (design depends on the fieldbus)	$\begin{aligned} & 2 \times \mathrm{RJ} 45 \\ & \text { (switched) } \end{aligned}$			
Supported Bus Terminals	all	only digital I/Os (except KL15xx, KL25xx, KL2692, KL27x1)	all	all	only digital I/Os (except KL15xx, KL25xx, KL2692, KL27x1)	all	all	all
Maximum number of Bus Terminals	64	64	64 (255 with terminal bus extension)	64 (255 with terminal bus extension)	64	64	64 (255 with terminal bus extension)	64
Electrical isolation	between fieldbus/ power contacts/ supply voltage	between fieldbus/ power contacts/ supply voltage	between fieldbus/ power contacts/ supply voltage	between fieldbus/ power contacts/ supply voltage	PROFIBUS: yes, CANopen and DeviceNet: no	between fieldbus/ power contacts/ supply voltage	between fieldbus/ power contacts/ supply voltage	between mains supply and internal 24 V power supply

		Embedded PC			
BCxx 20	BXxx00	CX80xx	CX9xxx	CX9020	CX50xx
fieldbus slave, with integrated IEC 61131-3 PLC	fieldbus slave, with integrated IEC 61131-3 PLC	Embedded PC, fieldbus slave, with integrated IEC 61131-3 PLC	Embedded PC, fieldbus slave, with integrated IEC 61131-3 PLC, Motion Control, visualisation	Embedded PC, fieldbus slave, with integrated IEC 61131-3 PLC, Motion Control, visualisation	Embedded PC, fieldbus slave, with integrated IEC 61131-3 PLC, Motion Control, visualisation
128 kbyte	256 kbyte	-	-	-	-
-	-	64 Mbyte DDR2	64... 128 Mbyte SDRAM	1 Gbyte DDR3 RAM	512 Mbyte DDR2
1,750 mA	1,450 mA	2,000 mA	2,000 mA	2,000 mA	2,000 mA
plug (design depends on the fieldbus)	plug (design depends on the fieldbus)	plug (design depends on the fieldbus)	-	optional, plug (design depends on the fieldbus)	optional, plug (design depends on the fi eldbus)
all	all	all	all	all	all
64 (255 with terminal bus extension)					
between fieldbus/ power contacts/ supply voltage	between fieldbus/ power contacts/ supply voltage	between supply voltage and fieldbus			

Product overview Bus Couplers

[^3]

The standard Bus Terminals (KLxxxx) can be optionally ordered as KSxxxx with pluggable wiring level.
EN 61131-2 specification www.beckhoff.com/EN61131-2

Bus Terminal | Analog input: KL3xxx/KS3xxx, KM3xxx

Bus Terminal \| Analog output: KL4xxx/KS4xxx									KM4xxx
Signal	1-channel		2-channel		4-channel		8-channel		2-channel
0... 10 V	KL4001	650	KL4002	650	KL4004	650			KM4602 651
	12 bit, potential-free output		12 bit		12 bit, no power contacts				12-bit manual/automatic operation
					KL4404 12 bit	651	KL4408 12 bit	651	
$\pm 10 \mathrm{~V}$	KL4031 12 bit, potential-free output		KL4032	648	KL4034	649			
			12 bit		12 bit, no power contacts				
			KL4132 16 bit	649	KL4434 12 bit	649	KL4438 12 bit	649	
					KL4494	649			
					12 bit, $2 \times$ input, $2 \times$ output				
0... 20 mA	KL4011 12 bit	652	KL4012 12 bit	652	KL4414 12 bit	653	KL4418 12 bit	653	
			KL4112 16 bit	653					
4... 20 mA	KL4021 12 bit	654	KL4022 12 bit	654	KL4424 12 bit	655	KL4428 12 bit	655	

The standard Bus Terminals (KLxxxx) can be optionally ordered as $K S x x x x$ with pluggable wiring level.

Bus Terminal | Special functions: KL5xxx/KS5xxx, KL6xxx/KS6xxx, KL8xxx

Signal						Signal Manual operation	KL8519 16-channel digital input signal module	
Position measurement	KL5001 SSI encoder interface	656	bidirectional SSI encoder interface		interface with programmable outputs			
	KL5101 differential input, incremental encoder interface	658	KL5152 32 bit, 2-channel incremental encoder interface	659	KL5151 32 bit, incremental encoder interface			
	KL5111 incremental encoder interface	659					KL8524 4×2-channel digital output,	671
Communication	KL6001 serial interface RS232, 19.2 kbaud	660	serial interface RS232, 115.2 kbaud	$\overline{660}$	serial interface TTY, 20 mA current loop		$24 \mathrm{VDC}, 0.5 \mathrm{~A}$	
	KL6051 data exchange terminal, 32 bit	661	KL6021 serial interface RS422/RS485, 19.2 kbaud	661	KL6041 serial interface RS422/RS485, 115.2 kbaud		KL8528 8-channel digital output, 24 V DC, 0.5 A	671
	KL6023 wireless adapter for EnOcean radio technology	665	RS485 interface for EnOcean signals	665 s	KM6551 wireless data exchange terminal		KL8548	671
	KL6201 AS-Interface master terminal	662	KL6211 AS-Interface master terminal with power contacts	662	KL6224 666 10-Link master		8-channel analog output, $0 . .10 \mathrm{~V}$	
	KL6301	666	KL6401	667	KL6581 664			
	EIB/KNX Bus Terminal		LON Bus Terminal		EnOcean master	Power	KL8001	672
	KL6583	664	KL6771	667	KL6781 667	terminals	switching capacity 5.5 kW ,	
	EnOcean transmitter/receiver		MP-Bus master terminal		M-Bus master terminal		nominal current 0.9 to 9.9 A ,	
	KL6811 DALIDSI master and power supply terminal	668	KL6831 SMI terminal, LoVo	668	KL6841 668 SMI terminal, 230 VAC		connection mechanism for Siemens contactors (Sirius 3R series)	
Safety	KL6904 TwinSAFE Logic Bus Terminal, 4 safe outputs	669						

Bus Terminal | System terminals: KL9xxx/KS9xxx

The Bus Terminal system

The I/O signals are wired in a decentralised way to fieldbus devices or centrally to the controller. For both possibilities the available Bus Terminals enable an easy adaptation of different applications. With their compact design Beckhoff I/Os replace an entire group of devices with similar functions.

Flexible and stable

The Beckhoff Bus Terminal is an open and fieldbus-neutral I/O system consisting of electronic terminal blocks. The head of an electronic terminal block is the Bus Coupler with the interface to the fieldbus. Bus Couplers are available e.g. for EtherCAT, PROFIBUS and CANopen. Please see page $\quad 548$ for a complete Bus Coupler overview.

With the master terminals, fieldbus functionalities are also available in form of a standard Bus Terminal. This is particularly advantageous for bus systems that are integrated as subsystems into a higherlevel system. It means that only one system is required for the subsystem and for the higher-level bus interface. Master terminals are available for the following bus systems: AS-Interface, EIB/KNX, LON, DALI, MP-Bus and M-Bus.

Automation standard

The Beckhoff Bus Terminal ensures that control cabinets and terminal boxes are constructed more economically. Using the 4-wire terminating system, all of the usual sensors
and actuators with different types of signals can be connected directly without other connection systems. It is no longer necessary to wire the field devices between the first terminal connection in the control cabinet or in the terminal box and the controller. This significantly reduces the costs involved in controller design and saves space, material, work, and money.

The Beckhoff Bus Terminals have been tried and tested in a wide range of sectors worldwide, from machine construction to building management. Beckhoff Bus Terminal technology makes design, construction, wiring, commissioning and maintenance of equipment and machines very cost-effective.

Design

The robust housing, secure contacts and the solidly built electronics are prominent features of our components. A station consists of one Bus Coupler and up to 64 electronic terminal blocks. With the K-bus extension it is possible to operate up to 255 Bus Terminals on one Bus Coupler.

The electronic terminal blocks are clipped onto the Bus Coupler. They connect by simply latching together. This means that each electronic terminal block can be exchanged separately and can be mounted on a standard mounting rail. In addition to horizontal type mounting, all other mounting types are permitted in the majority of the cases.

Free mix of signals

The Beckhoff I/O system supports about 400 Bus Terminals and is thus probably the most comprehensive system on the market. Appropriate Bus Terminals are available for any digital or analog automation signal type, for currents and voltages with standardised signal levels and for PT100 and thermocouple signals. Intelligent devices can be connected via Bus Terminals with serial interfaces in accordance with RS232, RS485 or 20 mA TTY.

The fine granularity of the Bus Terminals enables bit-precise composition of the required I / O channels. The digital Bus Terminals are available as $2-, 4-, 8$ - or 16 -channel terminals. In the 16-channel variant, digital input and output signals are arranged in an ultra-compact way within a standard Bus Terminal housing across a width of only 12 mm . The standard analog signals of $-10 \ldots+10 \mathrm{~V}$, $0 \ldots+10 \mathrm{~V}, 0 \ldots 20 \mathrm{~mA}$ and $4 \ldots 20 \mathrm{~mA}$ are all available as $1-, 2-, 4$ - and 8 -channel variants within a standard housing. The system is thus highly modular and can be projected costeffectively with an accuracy down to a single channel.

Flexible connection system

The standard KLxxxx Bus Terminals include electronics and connection level in a single enclosure. They have been tried and tested for years. They feature integrated screwless spring loaded technique for fast and simple assembly.

The HD Bus Terminals (High Density) with 16 terminal points are distinguished by a particularly compact design, as the packaging density is twice as large as that of the standard 12 mm Bus Terminals. Single-wire conductors and conductors with a wire end sleeve can be inserted directly into the spring loaded terminal point without tools.

The KSxxxx type Bus Terminals feature a pluggable connection level. The assembly and wiring procedure for the KS series is the same as for the KL series. The KS series Bus Terminals enable the complete wiring to be removed as a plug connector from the top of the housing for servicing. The lower section can be removed from the Bus Terminal assembly by pulling the unlocking tab. Insert the new component and plug in the connector with the wiring. This reduces the installation time and eliminates the risk of wires being mixed up.

The familiar dimensions of the Bus Terminal only had to be changed slightly. The new connector adds about 3 mm . The maximum height of the Bus Terminal remains unchanged.

A tab for strain relief of the cable simplifies assembly in many applications and prevents tangling of individual connection wires when the connector is removed.

The Bus Terminal system is complemented by the compact version of the KMxxxx terminal modules with increased packing density. They are fully system-compatible.

Like the Bus Terminals, they are bus-neutral and can therefore be operated with any Beckhoff Bus Coupler or Bus Terminal Controller. Like the standard Bus Terminals, the KM modules are integrated in the I/O system and connected with the internal terminal bus (K-bus). Bus Terminals and terminal modules can be combined without restriction.

Like for the Bus Terminals, no tools are required for the wiring. Spring-loaded terminals are used, however with connectors (cable cross section $0.5 \ldots 1.5 \mathrm{~mm}^{2}$).

The terminal modules combine 16, 32 or 64 digital inputs or outputs on a very small area. This compact and slimline design enables very high packing densities, leading to smaller control cabinets and terminal boxes.

Bus Terminal with standard wiring

555

HD Bus Terminals (High Density) with 16 terminal points

Bus Terminal with pluggable wiring

Terminal module with pluggable wiring with high packing density

Bus Terminal features

Status LEDs for reliable and fast startup

Marking material for standard terminal blocks

Supply point for downstream inputs and outputs

Detachable labelling fields for clear text labels

Power contacts connect the supply for sensors/actuators automatically.

Supply point for Bus Couplers and downstream inputs and outputs

Bus Couplers represent a universal interface to the fieldbuses.

Terminal block design
W x H x D (mm):
$12 \times 100 \times 68$

Assembly on 35 mm DIN mounting rail with no accessories

Ethernet TCP/IP

System overview fieldbus I／O

Bus Coupler series BK，the link between Bus Terminals and fieldbus

Bus Terminal Controller series BC with integrated IEC 61131－3 PLC

Bus Terminal Controller series BX with integrated IEC 61131－3 PLC and extended interfaces

Embedded PC series CX， further Embedded PCs see page 184

$|$| Free mix of signals： |
| :--- |
| about 400 different |
| Bus Terminals for |
| connection to all |
| common sensors and |
| actuators |

The terminal modules with plug－in wiring combine 16， 32 or 64 digital I／Os within a very small space and with high packing density．

The head station of the Bus Terminals： from Bus Coupler with fieldbus interface to Embedded PC actuators

Potential feed terminals enable configuration of different potential groups．
 66 日最 $80,86,8088,68,88$届 06.86 .86888 .88 .86 .38

Terminal bus extension

The Bus Couplers and Bus Terminal Controllers link the bus systems to the modular, extendable electronic terminal blocks. One unit consists of one Bus Coupler, any number of terminals between 1 and 64, and a bus end terminal. The "Economy plus" and "Compact" series support all Bus Terminals of the Beckhoff system. It is also possible to operate up to 255 Bus Terminals on this Bus Coupler series with the K-bus extension.

The Bus Terminal extension allows Bus Terminals to be located in up to 31 blocks in the control cabinet or in the application. With a distance of up to 5 m between the Bus Terminal blocks, the Bus Terminal system can be used over a wider area and helps save costs.

The Bus Coupler recognises the terminals to which it is connected, and performs the
assignment of the inputs and outputs to the bytes of the process image automatically. The blocks with terminal bus extensions are treated as one unit by the Bus Coupler. The extension is transparent for the fieldbus and higher-level systems.

The system of Bus Coupler and Bus Terminal can be extended by replacing the KL9010 end terminal with the KL9020 extension. The KL9020 makes the K-bus signals available in an RJ45 socket for transmission onwards via a shielded Industrial Ethernet cable.

The KL9050 coupler terminal starts a further remote Bus Terminal block and provides the logical connection to the Bus Coupler via the Ethernet cable. 24 V DC, electrically isolated, for the field level can be input at
this coupler terminal. The internal K-bus shares the same potential as the K-bus of the coupler. The KL9050 can be used via a second socket for the extension to the next Bus Terminal block. This Bus Terminal block starts in the same way as the one with a KL9050 coupler terminal. This coupling works at up to 31 stations. The maximum distance between two Bus Terminal blocks is 5 m and allows a total extension of 155 m . The system uses shielded Industrial Ethernet cables with two RJ45 plugs for the transmission. The cable is supplied ready-made in different lengths or can be made-to-measure for applications with conventional Ethernet tools. Data transfer is based on the interference-free and RS485 industry standard in a doublescreened cable.

Operation with up to 64 Bus Terminals to one Bus Coupler with KL9010 bus end terminal

Operation with up to 255 Bus Terminals to one Bus Coupler with terminal bus extension end terminal KL9020 and coupler terminal KL9050

Technical data - Bus Coupler housing

The Beckhoff Bus Coupler electronics can be mounted in a variety of housings. A housing has three power contacts, which, if the application requires, automatically implement a continued connection, carrying the potential of the power circuit to the next Bus Terminal. The supply voltage that is connected to the Bus Coupler spring-loaded terminals is 24 V DC. If a different voltage is required for the power contacts, the appropriate power feed terminal must be inserted after the Bus Coupler.

Mechanical data	BKxxxx, BCxxxx	BKxx50, BCxx50	BXxxxx	LCxxxx	BC9191
Design form	compact terminal housing with signal LED	compact controller			
Material	polycarbonate	polycarbonate	polycarbonate	polycarbonate	PC/ABS
Dimensions (Wx H x D)	$\begin{aligned} & 49 \mathrm{~mm} \times 100 \mathrm{~mm} \times \\ & 68 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 44 \mathrm{~mm} \times 100 \mathrm{~mm} \times \\ & 68 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 81 \mathrm{~mm} \times 100 \mathrm{~mm} \mathrm{x} \\ & 89 \mathrm{~mm} \\ & (B X 8000: 61 \mathrm{~mm} \times \\ & 100 \mathrm{~mm} \times 89 \mathrm{~mm} \text {) } \\ & \hline \end{aligned}$	$\begin{aligned} & 21 \mathrm{~mm} \times 100 \mathrm{~mm} \times \\ & 68 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 118 \mathrm{~mm}(127 \mathrm{~mm} \\ & \text { with end cap and } \\ & \text { DIN rail mounting) x } \\ & 100 \mathrm{~mm} \times 70 \mathrm{~mm} \end{aligned}$
Installation	on 35 mm DIN rail, conforming to EN 60715 with lock				
Side by side mounting by means of	double slot and key connection				
Marking	standard terminal block marking	connection points on housing labelled and numbered			
Vibration resistance	conforms to EN 60068-2-6: 1 g (extended range: 5 g)				
Shock resistance	conforms to EN 60068-2-27: $15 \mathrm{~g}, 11 \mathrm{~ms}$ (extended range: $25 \mathrm{~g}, 6 \mathrm{~ms}$); 1000 shocks per direction, 3 axes				
EMC immunity/emission	conforms to EN 61000-6-2/EN 61000-6-4				
Connection	BKxxxx, BCxxxx	BKxx50, BCxx50	BXxxxx	LCxxxx	BC9191
Wiring	spring-loaded technique with pluggable wiring level				
Connection cross-section	$0.08 \ldots 2.5 \mathrm{~mm}^{2}$, AWG 28-14, stranded wire, solid wire	$0.08 \ldots 2.5 \mathrm{~mm}^{2}$, AWG 28-14, stranded wire, solid wire	$0.08 \ldots 2.5 \mathrm{~mm}^{2}$, AWG 28-14, stranded wire, solid wire	$0.08 \ldots 2.5 \mathrm{~mm}^{2}$, AWG 28-14, stranded wire, solid wire	$0.08 \ldots 1.5 / 2.5 \mathrm{~mm}^{2}$ AWG 28-14, stranded wire, solid wire
Stripping length	$8 . .9 \mathrm{~mm}$	$8 . . .9 \mathrm{~mm}$	$8 . .9 \mathrm{~mm}$	$8 . .9 \mathrm{~mm}$	$6 \ldots 7 \mathrm{~mm} / 8 . . .9 \mathrm{~mm}$
Fieldbus connection	depending on fieldbus	depending on fieldbus	depending on fieldbus	spring-loaded terminals	RJ45
Power contacts	3 spring contacts	3 spring contacts	3 spring contacts	3 spring contacts	none
Current load	Imax: 10 A (125 A short-circuit)	-			
Nominal voltage	24 V DC	24 V DC	24 V DC	24 V DC	110... 240 V AC

Technical data - Bus Terminal housing

The Beckhoff Bus Terminal electronics can be mounted in a variety of housings. Bus Terminals are available with up to three power contacts, and can have a variety of voltages. Care should be taken to ensure that a change in voltage always starts with a power feed terminal.

Mechanical data	KLxxxx	KL5101	KSxxxx	HD housing	KL1862, KLx872
Design form	compact terminal housing with signal LED	compact terminal housing with signal LED	terminal housing with pluggable wiring level	HD (High Density) housing with signal LED	compact terminal housing with signal LED
Material	polycarbonate				
Dimensions (W x H x D)	$\begin{aligned} & 12 \mathrm{~mm} \times 100 \mathrm{~mm} \times \\ & 68 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 24 \mathrm{~mm} \times 100 \mathrm{~mm} x \\ & 68 \mathrm{~mm} \end{aligned}$	$12 / 24 \mathrm{~mm} \times 100 \mathrm{~mm} \mathrm{x}$ 71 mm	$\begin{aligned} & 12 \mathrm{~mm} \times 100 \mathrm{~mm} x \\ & 68 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 12 \mathrm{~mm} \times 100 \mathrm{~mm} x \\ & 68 \mathrm{~mm} \end{aligned}$
Installation	on 35 mm DIN rail, conforming to EN 60715 with lock				
Side by side mounting by means of	double slot and key connection				
Marking	standard terminal block marking	standard terminal block marking	standard terminal block marking	-	standard terminal block marking
Vibration resistance	conforms to EN 60068-2-6: 1 g (extended range: 5 g)				
Shock resistance	conforms to EN 60068-2-27: 15 g , 11 ms (extended range: $25 \mathrm{~g}, 6 \mathrm{~ms}$); 1000 shocks per direction, 3 axes				
EMC immunity/emission	conforms to EN 61000-6-2/EN 61000-6-4				
Connection	KLxxxx	KL5101	KSxxxx	HD housing	KL1862, KLx872
Wiring	spring-loaded technique	spring-loaded technique	spring-loaded technique	direct plug-in technique	flat-ribbon cable connection
Connection cross-section	s, st*: 0.08...2.5 mm², AWG 28-14	$\mathrm{s}, \mathrm{st}^{*}: 0.08 \ldots 2.5 \mathrm{~mm}^{2},$ AWG 28-14	$\mathrm{s}, \mathrm{st}^{*}$: $0.08 \ldots 1.5 \mathrm{~mm}^{2}$, AWG 28-16	$\begin{aligned} & \mathrm{s}^{*}: 0.08 \ldots 1.5 \mathrm{~mm}^{2} ; \\ & \text { st: } 0.25 \ldots 1.5 \mathrm{~mm}^{2} ; \\ & \mathrm{f}: 0.14 \ldots 0.75 \mathrm{~mm}^{2} \end{aligned}$	common flat-ribbon cables, AWG 28, spacing 1.27 mm
Stripping length	$8 . . .9 \mathrm{~mm}$	$8 . . .9 \mathrm{~mm}$	$9 . .10 \mathrm{~mm}$	$8 . . .9 \mathrm{~mm}$	-
Power contacts	up to 3 blade/spring contacts		2 blade/spring contacts	2 blade/spring contacts	none
Current load	$I_{\text {max }} 10 \mathrm{~A}$ (125 A short-circuit)				
Nominal voltage	depends on Bus Terminal type				

Technical data - Terminal module housing

The Beckhoff terminal modules with pluggable connection level are mounted in enclosures of different size. Like for the HD Bus Terminals, spring-loaded terminals are used and no tools are required for the wiring.

KM10x8, KM20x8

Mechanical data	KMx0x2 KMx0x4	KMx0x8
Design form	compact terminal module with pluggable wiring level	
Dimensions (W x H x D)	$26.5 \mathrm{~mm} \times 100 \mathrm{~mm} \times 71 \mathrm{~mm}$ ($75 \mathrm{~mm} \times 100 \mathrm{~mm} \times 55 \mathrm{~mm}$	$123 \mathrm{~mm} \times 100 \mathrm{~mm} \times 55 \mathrm{~mm}$
Installation	on 35 mm DIN rail, conforming to EN 60715 with lock	
Side by side mounting by means of	double slot and key connection	
Vibration resistance	conforms to EN 60068-2-6	
Shock resistance	conforms to EN 60068-2-27	
EMC immunity/emission	conforms to EN 61000-6-2/EN 61000-6-4	
Connection	KMx0x2, KMx0x4, KMx0x8	
Wiring	spring-loaded technique	
Connection cross-section	$0.08 \ldots 1.5 \mathrm{~mm}^{2}$, stranded wire, solid wire	
Stripping length	8 mm	
Power contacts	none	
Nominal voltage	depends on Bus Terminal type, max. 60 V DC	

BKxxxx | Bus Couplers

The interface between fieldbus and terminals

Standard | BKxx00

Economy | BKxx10

Economy plus | BKxx20

Compact | BKxx50

Low Cost | LCxx00

The Bus Couplers link the modularly expandable electronic terminal blocks with the respective fieldbus systems. The Bus Coupler performs all the monitoring and control tasks that are necessary for operation of the connected Bus Terminals. The specific settings of analog and multifunctional Bus Terminals are adapted to the application via the KS2000 configuration software.

In the standard Bus Couplers a unit consists of a Bus Coupler, any number of up to 64 terminals and a bus end terminal. The "Economy" versions enable particularly cost-effective configuration of peripheral
interfacing connections with up to 64 digital input/output terminals. In addition to digital signal types, the "Economy plus" Bus Couplers also support all other types. Up to 255 Bus Terminals can be connected via the K-bus extension. The "Compact" Bus Couplers have a particularly compact housing and also enable connection of up to 255 Bus Terminals via the terminal bus extension. The "Low Cost" Bus Couplers are characterised by small dimensions and costeffective connection technology and enable connection of up to 64 digital input/output terminals.

Technical data	BKxxxx, LCxxxx
Power supply	$24 \mathrm{~V} \mathrm{DC} \mathrm{(-15} \mathrm{\% /+20} \mathrm{\%)}$
Operating/storage temperature	$0 \ldots+55^{\circ} \mathrm{C} /-25 \ldots+85^{\circ} \mathrm{C}$ (extended temperature range: $\left.-25 \ldots+60{ }^{\circ} \mathrm{C} /-40 \ldots+85^{\circ} \mathrm{C}\right)$
Relative humidity	95%, no condensation
Vibration resistance	conforms to EN 60068-2-6: 1 g (extended range: 5 g)
Shock resistance	conforms to EN 60068-2-27: $15 \mathrm{~g}, 11 \mathrm{~ms}$ (extended range: $25 \mathrm{~g}, 6 \mathrm{~ms}) ; 1000$ shocks per direction, 3 axes
EMC immunity/emission	conforms to EN 61000-6-2/EN 61000-6-4
Protect. class/installation pos.	IP 20/variable

EtherCAT | Bus Couplers

EtherCAT. $\underset{\sim}{*}$

	EtherCAT "Economy plus" Bus Coupler for up to 64 Bus Terminals (255 with K-bus extension)	EtherCAT "Compact" Bus Coupler for up to 64 Bus Terminals (255 with K-bus extension)	EtherCAT "Compact" coupler between E-bus and K -bus Terminals
Technical data	BK1120	BK1150	BK1250
Number of Bus Terminals	64 (255 with K-bus extension)		
Max. number of bytes fieldbus	1,024 byte input and 1,024 byte output		
Current supply K-bus	1,750 mA	2,000 mA	500 mA
	The BK1120 Bus Coupler connects EtherCAT, the real-time Ethernet system, with the modular, extendable electronic terminal blocks. A unit consists of a Bus Coupler, any number (between 1 and 64) of terminals (255 with K-bus extension) and one end terminal.	The BK1150 Bus Coupler connects EtherCAT to the modular extendable Bus Terminals (K-bus). A unit consists of a Bus Coupler, any number of terminals from 1 to 64 (with K-bus extension: 255) and a bus end terminal. The "Compact" Bus Coupler offers a cost-optimised alternative to the BK1120 EtherCAT Bus Coupler.	The BK1250 is a "Bus Coupler in terminal housing" for mixed application of EtherCAT Terminals (ELxxxx) and standard Bus Terminals (KLxxxx) in a bus station. Up to 64 Bus Terminals (with K-bus extension up to 255) can be connected to a BK1250.
Bus interface	$2 \times$ RJ45	$2 \times$ RJ45	via E-bus contacts
Data transfer rates	100 Mbaud	100 Mbaud	100 Mbaud
Weight	approx. 150 g	approx. 110 g	approx. 55 g
Operating temperature	$-25 . . .+60^{\circ} \mathrm{C}$	$0 . . .+55^{\circ} \mathrm{C}$	$-25 . . .+60^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex	CE, Ex	CE, UL, Ex
Further information	www.beckhoff.com/BK1120	www.beckhoff.com/BK1150	www.beckhoff.com/BK1250
Accessories			
Cordsets and connectors	see page 688	see page 688	see page 688
PC Fieldbus Cards	FC90xx 778	FC90xx 778	FC90xx 778

Lightbus | Bus Couplers

LIGHTBUS

	Standard Lightbus Bus Coupler for up to 64 Bus Terminals	Lightbus "Economy" Bus Coupler for up to 64 digital Bus Terminals	Lightbus "Economy plus" Bus Coupler for up to 64 Bus Terminals (255 with K-bus extension)
Technical data	BK2000	BK2010	BK2020
Number of Bus Terminals	64		64 (255 with K-bus extension)
Max. number of bytes fieldbus	512 byte input and 512 byte output	32 byte input and 32 byte output	512 byte input and 512 byte output
Current supply K-bus	1,750 mA	500 mA	1,750 mA
	The BK2000 Bus Coupler connects the Lightbus system to the electronic terminal blocks, which can be expanded in modular fashion. One unit consists of one Bus Coupler, any number of up to 64 terminals and one end terminal. - distance between stations: 45 m for APF fibre, 300 m HCS fibre	The BK2010 "Economy" variant permits particularly economical creation of peripheral interfacing connections. Up to 64 digital input/output terminals can be connected. - distance between stations: 45 m for APF fibre, 300 m HCS fibre	With the K-bus extension technology, the "Economy plus" Bus Coupler BK2020 allows the connection of up to 255 spatially distributed Bus Terminals to one Bus Coupler. The "Economy plus" series supports all Beckhoff system Bus Terminals. It can process in its full configuration 1,020 digital signals and a maximum of 128 analog input and output channels per slave. - distance between stations: 45 m for APF fibre, 300 m HCS fibre
Bus interface	$2 \times$ standard fibre optic connector Z1000 (plastic fibre), Z1010 (HCS fibre)	2 x standard fibre optic connector Z1000 (plastic fibre), Z1010 (HCS fibre)	$2 \times$ standard fibre optic connector Z1000 (plastic fibre), Z1010 (HCS fibre)
Data transfer rates	2.5 Mbaud	2.5 Mbaud	2.5 Mbaud
Weight	approx. 150 g	approx. 130 g	approx. 150 g
Operating temperature	$0 . . .+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$	$0 . .+55{ }^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex	CE, UL, Ex	CE, UL, Ex
Further information	www.beckhoff.com/BK2000	www.beckhoff.com/BK2010	www.beckhoff.com/BK2020
Accessories			
Cordsets and connectors	see page 688	see page 688	see page 688
PC Fieldbus Cards	FC200x 771	FC200x 771	FC200x 771

PROFIBUS | Bus Couplers

PROPT ${ }^{\text {® }}$
 B힌

	PROFIBUS "Economy" Bus Coupler for up to 64 digital Bus Terminals, 1.5 Mbaud	Standard PROFIBUS DP/FMS Bus Coupler for up to 64 Bus Terminals, 12 Mbaud	PROFIBUS "Economy" Bus Coupler for up to 64 digital Bus Terminals, 12 Mbaud
Technical data	BK3010	BK3100	BK3110
Number of Bus Terminals	64		
Max. number of bytes fieldbus	64 byte input and 64 byte output	64 byte input and 64 byte output (DP and FMS mode), 128 byte input and 128 byte output (only DP mode)	64 byte input and 64 byte output
Current supply K-bus	500 mA	1,750 mA	500 mA
	The BK3010 "Economy" variant permits particularly economical creation of peripheral interfacing connections. Up to 64 digital input/output terminals can be connected.	The BK3100 Bus Coupler connects the PROFIBUS system to the electronic terminal blocks, which can be extended in modular fashion. One unit consists of the Bus Coupler, any number of up to 64 terminals and one end terminal.	The BK3110 "Economy" variant permits particularly economical creation of peripheral interfacing connections. Up to 64 digital input/output terminals can be connected.
Bus interface	$1 \times$ D-sub 9-pin socket with shielding	$1 \times$ D-sub 9-pin socket with shielding	$1 \times$ D-sub 9-pin socket with shielding
Data transfer rates	automatic detection up to max. 1.5 Mbaud	automatic detection up to 12 Mbaud	automatic detection up to 12 Mbaud
Weight	approx. 150 g	approx. 170 g	approx. 150 g
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$	$0 . . .+55^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex, GL	CE, UL, Ex, GL	CE, UL, Ex, GL
Further information	www.beckhoff.com/BK3010	www.beckhoff.com/BK3100	www.beckhoff.com/BK3110
Accessories			
Cordsets and connectors	see page 688	see page 688	see page 688
PC Fieldbus Cards	FC310x 772	FC310x 772	FC310x 772

Interbus, CANopen | Bus Couplers

CANopen

	Standard Interbus Bus Coupler for up to 64 Bus Terminals	Interbus "Economy plus" Bus Coupler for up to 64 Bus Terminals (255 with K-bus extension)	CANopen "Economy" Bus Coupler for up to 64 digital Bus Terminals
Technical data	BK4000	BK4020	BK5110
Number of Bus Terminals	64	64 (255 with K-bus extension)	64
Max. number of bytes fieldbus	64 byte input and 64 byte output		5 Tx/Rx PDOs
Current supply K-bus	1,750 mA	1,750 mA	500 mA
	The BK4000 Bus Coupler connects the Interbus bus system to the electronic terminal blocks, which can be extended in modular fashion. One unit consists of one Bus Coupler, any number of up to 64 terminals and one end terminal.	With the K-bus extension technology, the "Economy plus" Bus Coupler BK4020 allows the connection of up to 255 spatially distributed Bus Terminals to one Bus Coupler. The "Economy plus" coupler supports all Beckhoff system Bus Terminals and can process 512 bit digital inputs and outputs per slave.	The BK5110 "Economy" variant permits particularly economical creation of peripheral interfacing connections. Up to 64 digital input/output terminals can be connected.
Bus interface	$2 \times$ D-sub plug, 9 -pin, plug and socket with screening and vibration lock	$2 \times$ D-sub plug, 9 -pin, plug and socket with screening and vibration lock	1 x open style connector, 5 -pin, included
Data transfer rates	500 kbaud	500 kbaud	up to 1 Mbaud
Weight	approx. 170 g	approx. 170 g	approx. 130 g
Operating temperature	$0 . . .+55^{\circ} \mathrm{C}$	$0 . . .+55^{\circ} \mathrm{C}$	$0 . . .+55^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex	CE, UL, Ex	CE, UL, Ex, GL
Further information	www.beckhoff.com/BK4000	www.beckhoff.com/BK4020	www.beckhoff.com/BK5110
Accessories			
Cordsets and connectors	see page 688	see page 688	see page 688
PC Fieldbus Cards	-	-	FC510x 774

DeviceNet | Bus Couplers

DeviceNet

Technical data	BK5200	BK5210
Number of Bus Terminals	64	
Max. number of bytes fieldbus	512 byte input and 512 byte output	32 byte input and 32 byte output
Current supply K-bus	1,750 mA	500 mA
	The BK5200 Bus Coupler connects the DeviceNet bus system to the electronic terminal blocks, which can be extended in modular fashion. One unit consists of one Bus Coupler, any number of up to 64 terminals and one end terminal.	The BK5210 "Economy" variant permits particularly economical creation of peripheral interfacing connections. Up to 64 digital input/output terminals can be connected.
Bus interface	1 x open pluggable connector, 5-pin, included	1 x open pluggable connector, 5-pin, included
Data transfer rates	automatic detection up to 500 kbaud	automatic detection up to 500 kbaud
Weight	approx. 150 g	approx. 130 g
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex	CE, UL, Ex, GL
Further information	www.beckhoff.com/BK5200	www.beckhoff.com/BK5210
Accessories		
Cordsets and connectors	see page 688	see page 688
PC Fieldbus Cards	FC520x 776	FC520x 776

ControlNet, CC-Link BK7000, BK7150

ControlNet, CC-Link, Modbus | Bus Couplers

ControlNet

Standard ControlNet Bus Coupler
for up to 64 Bus Terminals

	Standard ControlNet Bus Coupler for up to 64 Bus Terminals	CC-Link "Compact" Bus Coupler for up to 64 Bus Terminals (255 with K-bus extension)
Technical data	BK7000	BK7150
Number of Bus Terminals	64	64 (255 with K-bus extension)
Max. number of bytes fieldbus	512 byte input and 512 byte output	32 byte input and 32 byte output
Current supply K-bus	1,750 mA	1,000 mA
	The Bus Coupler BK7000 connects the ControlNet bus system with the electronic terminal blocks, which can be extended in modular fashion. One unit consists of one Bus Coupler, any number from 1 to 64 terminals and one end terminal. The BK7000 Bus Coupler supports the operation of all Bus Terminals. As far as the user is concerned, handling of the analog inputs/outputs is not different to other series. The information is available in the process image of the controller for processing in the form of a byte array.	The "Compact" Bus Coupler BK7150 connects the CC-Link system to the electronic terminal blocks, which can be extended in modular fashion. The BK7150 Bus Coupler supports the operation of all Bus Terminals. As far as the user is concerned, handling of the analog inputs/outputs is not different to other series. The information is available in the process image of the controller for processing in the form of a byte array.
Bus interface	$2 \times$ BNC female connector + NAP	$1 \times$ open style connector, 5-pin, included
Data transfer rates	5 Mbaud	156 kbaud... 10 Mbaud
Weight	approx. 170 g	approx. 100 g
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex	CE, UL, Ex
Further information	www.beckhoff.com/BK7000	www.beckhoff.com/BK7150
Accessories		
Cordsets and connectors	see page 688	see page 688
PC Fieldbus Cards	-	-

Modbus

SERCOS, RS485/RS232, Ethernet | Bus Couplers

sercos
the automation bus

Ethernet

PROFINET，EtherNet／IP，USB｜Bus Couplers

PROPFT ${ }^{\text {® }}$
 相自而

PROFINET＂Compact＂Bus Coupler
for up to 64 Bus Terminals
（ 255 with K－bus extension）

Standard PROFINET Bus Coupler
for up to 64 Bus Terminals
（with integrated 2－channel switch）

Technical data	BK9053	BK9103
Number of Bus Terminals	64 （255 with K－bus extension）	
Max．number of bytes fieldbus	512 byte input and 512 byte output	
Current supply K－bus	1，750 mA	1，750 mA
	The BK9053 Bus Coupler connects PROFINET with the modular，extendable electronic terminal blocks．One unit consists of one Bus Coupler，any number from 1 to 64 termi－ nals（ 255 with K－bus extension）and one end terminal． －distance between stations： 100 m between hub／switch and Bus Coupler or between Bus Coupler and Bus Coupler	The BK9103 Bus Coupler connects PROFINET RT with the modular，extendable electronic terminal blocks．One unit consists of one Bus Coupler，any number from 1 to 64 ter－ minals and one end terminal．In addition to the standard Bus Coupler functionalities，the BK9103 supports up to 255 terminals with the K－bus extension． －distance between stations： 100 m between hub／switch and Bus Coupler or between Bus Coupler and Bus Coupler
Bus interface	$1 \times$ RJ45	$2 \times$ RJ45（2－channel switch）
Data transfer rates	10／100 Mbaud，automatic recognition of the transmission rate	10／100 Mbaud，automatic recognition of the transmission rate
Weight	approx． 100 g	approx． 170 g
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$
Approvals	CE，UL，Ex	CE，UL，Ex，GL
Further information	www．beckhoff．com／BK9053	www．beckhoff．com／BK9103
Accessories		
Cordsets and connectors	see page 688	see page 688
PC Fieldbus Cards	FC90xx 778	FC90xx 778
TwinCAT Supplement	PROFINET RT Controller 933	PROFINET RT Controller 933

EtherNet/IP

BCxxxx, BXxxxx | Bus Terminal Controllers

Controllers with fieldbus interface

BCxxxx | Bus Terminal Controllers

The Bus Terminal Controllers of the BC and $B X$ series are small controllers with a high degree of flexibility. The I/O system consisting of modularly expandable electronic terminal blocks, interfaces for all market-relevant fieldbus systems and the integrated IEC 61131-3 PLC enables the Bus Terminal Controllers to be used as stand-alone control systems or as intelligent fieldbus slaves. The Bus Terminal Controller is programmed using the TwinCAT programming system according to IEC 61131-3. The configuration or fieldbus interface of the controller is used for loading the PLC program.

The main distinguishing features between the $B X$ series and the $B C$ series are the larger memory capacity and a larger number of expandable interfaces.

The BCxx00 Bus Terminal Controllers form a unit consisting of the controller, any number (up to 64) of terminals and a bus end terminal. In contrast to the $B C x x 50, B C x x 20$ and BXxx 00 series, a terminal bus extension cannot be used.

The "Compact" BCxx50 and BCxx20 Bus Terminal Controllers are fitted in costoptimised, compact housings and support the K-bus extension (up to 255 Bus Terminals).

The devices of the BX family have two serial interfaces. The device itself comprises an illuminated LC display with 2 lines of 16 characters each, a joystick switch and a real-time clock. Further peripheral devices, e.g. displays, can be connected via the integrated Beckhoff Smart System Bus (SSB).

Technical data	BCxxxx, BXxxxx
Power supply	24 V DC (-15 \%/+20 \%)
Programming	TwinCAT 2 (via programming interface or fieldbus)
Programming languages	IEC 61131-3 (IL, LD, FBD, SFC, ST)
Operating/storage temperature	$0 \ldots+55^{\circ} \mathrm{C} /-25 \ldots+85^{\circ} \mathrm{C}$ (extended temperature range: $-25 \ldots+60^{\circ} \mathrm{C} /-40 \ldots+85^{\circ} \mathrm{C}$)
Relative humidity	95%, no condensation
Vibration resistance	conforms to EN 60068-2-6
Shock resistance	conforms to EN 60068-2-27
EMC immunity/emission	conforms to EN 61000-6-2/EN 61000-6-4
Protect. class/installation pos.	IP 20/variable

PROFIBUS, CANopen | Bus Terminal Controllers

PROPT ${ }^{\text {® }}$
 Bठ's

Technical data	BC3100	BC3150
Number of Bus Terminals	64	64 (255 with K-bus extension)
Max. number of bytes fieldbus	128 byte input and 128 byte output	
Current supply K-bus	1,750 mA	1,000 mA
	The Bus Terminal Controller BC3100 is a Bus Coupler with integrated PLC functionality and has a fieldbus interface for PROFIBUS. It is an intelligent slave and can be used as distributed intelligence in the PROFIBUS system.	The "Compact" BC3150 Bus Terminal Controller is housed in a cost-optimised and compact housing. Unlike the BC3100, the BC3150 supports up to 255 Bus Terminals via the K-bus extension.
Bus interface	$1 \times$ D-sub socket, 9-pin	$1 \times$ D-sub socket, 9-pin
Data transfer rates	automatic detection up to 12 Mbaud	automatic detection up to 12 Mbaud
Program memory	32/96 kbytes	48 kbytes
Data memory	32/64 kbytes	32 kbytes
Remanent data	512 bytes	2 kbytes
Online change	-	yes
Weight	approx. 170 g	approx. 100 g
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex, GL	CE, UL, Ex
Further information	www.beckhoff.com/BC3100	www.beckhoff.com/BC3150
Accessories		
Cordsets and connectors	see page 688	see page 688
PC Fieldbus Cards	FC310x 772	FC310x 772
TwinCAT 2 PLC	see page 944	see page 944

CANopen

DeviceNet, Modbus, RS232/RS485 | Bus Terminal Controllers

DeviceNet

The BC5250 Bus Terminal Controller with DeviceNet interface extends the Beckhoff small controller series by a cost-optimised version in a compact housing. The DeviceNet Controller offers automatic baud rate detection up to 500 kbaud and two address selection switches for address assignment.

Bus interface	open style connector, 5-pin	open style connector, 5-pin
Data transfer rates	automatic detection up to 500 kbaud	automatic detection up to 500 kbaud
Program memory	48 kbytes	256 kbytes
Data memory	32 kbytes	256 kbytes
Remanent data	2 kbytes	2 kbytes
Online change	yes	yes
Weight	approx. 100 g	approx. 250 g
Operating temperature	$-25 \ldots+60^{\circ} \mathrm{C}$	$-25 \ldots+60{ }^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex	CE, UL
Further information	www.beckhoff.com/BC5250	www.beckhoff.com/BX5200
Accessories		
Cordsets and connectors	see page	688
PC Fieldbus Cards	FC520x	see page
TwinCAT 2 PLC	see page	776

Modbus

The Bus Terminal Controller BC7300 is a Bus Coupler with integrated PLC functionality and has a fieldbus interface for Modbus. The BC7300 is an intelligent slave and can be used as a non-central intelligence in the Modbus system.

D-sub 9-pin, RS485		RS485 D-sub	
150, 300, 600, 1,200, 2,400, 4,800, 9,600, 19,200, 38,400 baud (default: 9,600 baud)		1.2 kbaud... 38.4 kbaud	
32/96 kbytes		48 kbytes	
32/64 kbytes		32 kbytes	
512 bytes		2 kbytes	
-		yes	
approx. 170 g		approx. 100 g	
$0 \ldots+55^{\circ} \mathrm{C}$		$-25 . . .+60^{\circ} \mathrm{C}$	
CE, UL, Ex, GL		CE, UL, Ex	
www.beckhoff.com/BC7300		www.beckhoff.com/BC8050	
see page	688	see page	688
-		-	
see page	944	see page	944

The Bus Terminal Controller BC8050 with serial RS485 interface extends the Beckhoff small controller series by a cost-optimised version in a compact housing. An open serial protocol - like in the BK8×00 Bus Couplers - and the Modbus RTU/ASCII protocol are implemented. The address and the protocol are selected via the two rotary selection switches.
see page
944

RS232/RS485, Ethernet | Bus Terminal Controllers

RS232 Bus Terminal Controller
for up to 64 Bus Terminals
(255 with K-bus extension)

Technical data	BC8150	BX8000
Number of Bus Terminals	64 (255 with K-bus extension)	
Max. number of bytes fieldbus	512 byte input and 512 byte output	
Current supply K-bus	$1,000 \mathrm{~mA}$	1,450 mA
	The Bus Terminal Controller BC8150 with serial RS232 interface extends the Beckhoff small controller series by a cost-optimised version in a compact housing. An open serial protocol - like in the BK8×00 Bus Couplers - and the Modbus RTU/ASCII protocol are implemented.	The BX8000 Bus Terminal Controller is a stand-alone PLC. One unit consists of the BX8000 Bus Terminal Controller with up to 64 Bus Terminals and a bus end terminal. With the terminal bus extension system, the connection of up to 255 Bus Terminals is possible. The controller is programmed via the COM1 interface. In addition, the BX8000 has a second COM port, optionally RS232 or RS485. This can be used for connecting serial devices, such as displays.
Bus interface	RS232 D-sub	open style connector, 5-pin
Data transfer rates	1.2 kbaud... 38.4 kbaud	300 baud... 115 kbaud
Program memory	48 kbytes	256 kbytes
Data memory	32 kbytes	256 kbytes
Remanent data	2 kbytes	2 kbytes
Online change	yes	yes
Weight	approx. 100 g	approx. 250 g
Operating temperature	$-25 \ldots+60^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex	CE, UL
Further information	www.beckhoff.com/BC8150	www.beckhoff.com/BX8000
Accessories		
Cordsets and connectors	see page 688	see page 688
PC Fieldbus Cards	-	-
TwinCAT 2 PLC	see page 944	see page 944

Ethernet

The Bus Terminal Controller BC9000 is a Bus Coupler with integrated PLC functionality and has a fieldbus interface for Ethernet. It is an intelligent slave that can be used as a non-central intelligence in the Ethernet system. One unit consists of the Bus Terminal Controller, any number of terminals between 1 and 64, and a bus end terminal.

The BC9050 Bus Terminal Controller with Ethernet interface extends the Beckhoff small controller series by a cost-optimised version in a compact housing.

The BC9020 Bus Terminal Controller is a Bus Coupler with integrated PLC functionality and has a fieldbus interface for Ethernet. It is an intelligent slave and can be used as decentralised intelligence in the Ethernet system.

Ethernet | Bus Terminal Controllers

Ethernet

Technical data	BC9120		BC9100	
Number of Bus Terminals	64 (255 with K-bus extension)		64	
Max. number of bytes fieldbus	512 byte input and 512 byte output			
Current supply K-bus	1,750 mA		1,750 mA	
	In contrast to the BC9020, the BC9120 has an additional RJ45 port. Both Ethernet ports operate as 2-channel switches.	$\underbrace{+60^{\circ} \mathrm{C}}-25^{\circ} \mathrm{C}$	The Bus Terminal Controller BC9100 is a Bus Coupler with integrated PLC functionality and has a fieldbus interface for Ethernet. The BC9100 is an intelligent slave and can be used as a non-central intelligence in the Ethernet system.	$H^{+60^{\circ} \mathrm{C}}$
Bus interface	$2 \times \mathrm{RJ45}$ (2-channel switch)		$2 \times \mathrm{RJ45}$ (2-channel switch)	
Data transfer rates	10/100 Mbaud, automatic recognition of the transmission rate		10/100 Mbaud, automatic recognition of the transmission rate	
Program memory	128 kbytes		64/96 kbytes	
Data memory	128 kbytes		64/128 kbytes	
Remanent data	2 kbytes		4,080 bytes	
Online change	yes		-	
Weight	approx. 170 g		approx. 170 g	
Operating temperature	$-25 \ldots+60^{\circ} \mathrm{C}$		$-25 \ldots+60^{\circ} \mathrm{C}$	
Approvals	CE, UL, Ex, GL		CE, UL, Ex, GL	
Further information	www.beckhoff.com/BC9120		www.beckhoff.com/BC9100	
Accessories				
Cordsets and connectors	see page	688	see page	688
PC Fieldbus Cards	FC90xx	778	FC90xx	778
TwinCAT 2 PLC	see page	944	see page	944

Ethernet Room Controller

 tionalities for room control in a compact design. The two versions differ in terms of grated interface to the KL6583 (EnOcean), the BC9191-0100 has an RS485 interface. Both versions have the necessary I/O signals and two switched Ethernet interfaces. They can be extended with Bus Terminals. A parameterisable PLC program for room temperature control is included in the delivery.

KLxxxx | Bus Terminals

The Bus Terminals have a galvanic isolation between the field level and the communication level (K -bus). A terminal is equipped with $1 . . . n$ input or output channels. The channels within a terminal are usually not electrically isolated from each other.

The power contacts on the left hand side (if available) supply the terminals with field voltage. Depending on the terminals 24 V DC, 230 V AC or other voltages are transferred. The supply power required is listed in the technical data. The maximum load of the power contacts is 10 A .

$\int_{-25^{\circ} \mathrm{C}}^{+60^{\circ} \mathrm{C}}$	Extended operating/ storage temperature
$\begin{aligned} & \mathrm{pm} / \mathrm{fm}_{n} \\ & 25 \mathrm{~g} \end{aligned}$	Extended mechanical load

Different field level connection techniques can be used for Bus Terminals:

- standard terminal point:
$0.08 \ldots 2.5 \mathrm{~mm}^{2}$ spring-loaded technique
- HD Bus Terminal: 0.08...
$0.75 \mathrm{~mm}^{2}$ (with ferrule);
$0.08 \ldots 1.5 \mathrm{~mm}^{2}$ (single-wire);
spring-loaded technique;
direct plug-in technique
- ribbon: especially used in Asia for digital input/output channels
- plug-in wiring level:

KS terminals

Some 2-channel Bus Terminals have a PE power contact, which can be used for PE distribution by connecting it together with similar terminals. The EMC spring contact on the underside of the terminal only serves to remove interference $\underset{\stackrel{ }{ } \rightarrow \text { and may not be }}{ }$ used as a protective earth ${ }^{-}$).

2-channel terminals

The 2-channel terminals provide additional power (+24 V DC), ground (0 V DC) and in many cases also PE for each channel. Connection is carried out with 3 - or 4 -wire connection.

8-channel terminals

The 8-channel terminals have one channel per connection point due to a high packing density. The power contact of the terminal will be used as the common reference potential. Connection is carried out with 1 -wire connection.

16-channel terminals

The HD (High Density) housing allows 16 channels to be accommodated on a unit that is only 12 mm wide. The power contact of the terminal will be used as the common reference potential. Connection is carried out with 1 -wire connection.

The Bus Terminals offer the possibility to directly connect many different signals. No signal converter or additional evaluation device is needed. The direct connection reduces the costs and simplifies the control technology. Each Bus Terminal separates the internal electronics from the connection level and thus simplifies the creation of voltage groups with different voltages. In addition, interfering voltages on the signal connector lose their adverse effects.

The KL1 1 xxx, KL2xxx Bus Terminal product family is designed for the processing of digital or binary signals. There are "High" and "Low" states. In the positive switching logic
the High state corresponds to the level of the supply voltage, the Low state corresponds to ground level. For negative switching logic it is the other way around. The Bus Terminal product family supports both types of logic for various supply voltages. 1-, 2-, 3- and 4 -wire connections allow the use of Bus Terminals in almost all applications without further wiring work.

The KL3xxx and KL4xxx Bus Terminal product family processes analog signals. The most commonly used are 0 to 10 V , $\pm 10 \mathrm{~V}, 0$ to 20 mA and 4 to 20 mA . Also many other industry-standard voltage and current signals are supported and pre-processed.

In the KL5xxx and KL6xxx Bus Terminal product families other complex signals, such as position values and digital interfaces, are supported. Some Bus Terminals act as fieldbus masters for subordinate bus systems. The Bus Terminal station thus becomes a universal gateway between different systems.

The KL9xxx system terminals round off the application of Bus Terminals with power feed and power supply units.

Technical data	KLxxxx $\mid \mathrm{KSxxxx}$
Electrical isolation	$500 \mathrm{~V}(\mathrm{~K}-\mathrm{bus} /$ field potential); if not indicated otherwise
Operating/storage temperature	$0 \ldots+55^{\circ} \mathrm{C} /-25 \ldots+85^{\circ} \mathrm{C}$ (extended temperature range: $\left.-25 \ldots+60^{\circ} \mathrm{C} /-40 \ldots+85^{\circ} \mathrm{C}\right)$
Relative humidity	95%, no condensation
Vibration resistance	conforms to EN $60068-2-6: 1 \mathrm{~g}$ (extended range: 5 g)
Shock resistance	conforms to EN $60068-2-27: 15 \mathrm{~g}, 11 \mathrm{~ms}$ (extended range: $25 \mathrm{~g}, 6 \mathrm{~ms}) ; 1000$ shocks per direction, 3 axes
EMC immunity/emission	conforms to EN 61000-6-2/EN $61000-6-4$
Protect. class/installation pos.	IP 20/variable (see documentation)
Pluggable wiring	for all KSxxxx Bus Terminals

Digital input | 24 V DC, positive switching

The digital inputs of a 24 V supply are among the most used signals. The EN 61131-2 standard describes the input characteristic and distinguishes three types. Type 1 has a small input current with low power dissipation. This input is optimised for mechanical switches and activelyswitched electronic outputs. Type 2 has a significantly larger input current and is optimised for 2-wire sensors with a high quiescent current consumption. In switched-on state the current consumption of this input is high. The related power dissipation is generally not acceptable. Type 3 is a combination between type 1 , with low current in switched-on state, and a satisfactorily high quiescent current for the majority of modern 2 -wire sensors. The type 3 input can be used in almost all applications as a replacement for type 1.

Signal voltage " 0 ": -3...5V DC Signal voltage " 1 ": $15 \ldots 30 \mathrm{~V}$ DC

Signal voltage " 0 ": $-3 \ldots 5 \mathrm{~V}$ DC Signal voltage "1": 11... 30 V DC

The diagram shows the typical current/voltage curves of the Bus Terminal inputs and the allowable range of conformity in accordance with the standard.

The input circuits differ in their filtering functions. The filtering has the task of suppressing electromagnetic interference. However, this does have the drawback of signal deceleration. The filter time of 3 ms is comparatively slow, but it can suppress the bouncing of a mechanical switch and delivers a stable signal for simple PLC applications. Filter times of 0.2 ms are suitable for applications with shortest possible reaction times and should be used for mechanical switches only in a restricted manner.

Signal voltage " 0 " $-3 \ldots 5 \mathrm{~V}$ DC
Signal voltage " 1 ": $11 \ldots 30 \mathrm{~V}$ DC

Characteristics of the 3 input types according to EN 61131-2 (24 V DC)

8-channel digital input terminal,
24 V DC, 1-wire,
type $1 / 3$
$\left.\begin{array}{ll|l|l|l}\hline \text { Technical data } & \begin{array}{l}\text { KL1408 } \\ \text { KS1408 }\end{array} & \text { KL1418 } \\ \text { KS1418 }\end{array}\right]$

16-channel digital input terminal, 24 V DC, 1-wire, type $1 / 3$	8-channel digital input + 8-channel digital output, 24 V DC, 1-wire, type $1 / 3$	8-channel digital input terminal, 24 V DC, 2-wire, type $1 / 3$	4-channel input termi 24 V DC, 2type $1 / 3$		4-channel digital input terminal, 24 V DC, 2-wire, type 2
KL1809 KL1819	KL1859	KL1808	$\begin{aligned} & \text { KL1404 \| } \\ & \text { KS1404 } \end{aligned}$	$\begin{aligned} & \hline \text { KL1414 } \\ & \text { KS1414 } \\ & \hline \end{aligned}$	KL1434 \| KS1434
		2-wire			
					EN 61131-2, type 2
typ. $3.0 \mathrm{~ms} \quad$ typ. 0.2 ms	typ. 3.0 ms	typ. 3.0 ms	typ. 3.0 ms	typ. 0.2 ms	typ. 0.2 ms
16	8 inputs +8 outputs	8	4		4
The HD (High Density) Bus Terminals with higher packing density contain 16 terminal points housed in a 12 mm terminal block.	The KL1859 digital Bus Terminal combines eight digital inputs and eight digital outputs in one device. - number of outputs: 8 - max. output current: 0.5 A (per channel) - load type: ohmic, inductive, lamp load - reverse voltage protection: yes	The KL1808 HD (High Density) Bus Terminal has eight inputs and eight 24 V connections, which are suitable for the connection of 2-wire sensors.	The KL1404 and KL1414 digital input terminals are suitable for the connection of four 2-wire sensors.		
24 V DC (-15 \%/+20 \%)	24 V DC (-15 \%/+20 \%)	24 V DC (-15 \%/+20 \%)	24 V DC (-1	\%/+20 \%)	24 V DC (-15 \%/+20 \%)
typ. $4 \mathrm{~mA}+$ load	typ. $15 \mathrm{~mA}+$ load	typ. $2 \mathrm{~mA}+$ load	typ. 1 mA +		only load
typ. 20 mA	typ. 25 mA	typ. 15 mA	typ. 3 mA		typ. 3 mA
$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$		$0 \ldots+55^{\circ} \mathrm{C}$
CE, UL, Ex, GL	CE, UL, Ex, GL	CE, UL, Ex, GL	CE, UL, Ex,		CE, UL, Ex
approx. 60 g	approx. 60 g	approx. 60 g	approx. 50		approx. 50 g
www.beckhoff.com/KL1809	www.beckhoff.com/KL1859	www.beckhoff.com/KL1808	www.beckh	.com/KL1404	www.beckhoff.com/KL1434

Digital input | 24 V DC, positive switching

	4-channel digital input terminal, 24 V DC, 2-/3-wire, type $1 / 3$		4-channel digital input terminal, 24 V DC, 2-/3-wire, type 2		2-channel digital input terminal, 24 V DC, with short-circuit protected sensor supply and diagnostics, 3 -wire, type 1	4-channel digital input terminal, 24 V DC, 3-wire, type $1 / 3$	
Technical data	KL1104 \| KS1104	KL1114\| KS1114	$\begin{aligned} & \hline \text { KL1304 \| } \\ & \text { KS1304 } \end{aligned}$	$\begin{aligned} & \hline \text { KL1314\| } \\ & \text { KS1314 } \end{aligned}$	$\begin{aligned} & \hline \text { KL1212 \| } \\ & \text { KS1212 } \end{aligned}$	KL1804	KL1814
Connection technology	2-/3-wire				3-wire		
Specification	EN 61131-2, type 1/3		EN 61131-2, type 2		EN 61131-2, type 1	EN 61131-2, type 1/3	
Input filter	typ. 3.0 ms	typ. 0.2 ms	typ. 3.0 ms	typ. 0.2 ms	typ. 3.0 ms	typ. 3.0 ms	typ. 0.2 ms
Number of inputs	4		4		2	4	
	The KL1104 and KL1114 digital input terminals have four inputs and also provide 24 V DC and ground per channel.		The KL1304 and KL1314 digital input terminals have four inputs and also provide 24 V DC and ground per channel. The terminals are especially suitable for sensors which require a high quiescent current.		The KL1212 digital input terminal contains two inputs, which are suitable for the connection of 3-wire sensors. The terminal offers a short-circuit-proof sensor supply voltage with integrated diagnostic. A shortcircuit or an open lead in the sensor supply is detected and the terminal status is relayed to the controller via the K-bus.		
Nominal voltage	24 V DC (-1	/+20 \%)	24 V DC (-15	/+20 \%)	24 V DC (-15 \%/+20 \%)	24 V DC (-1	/+20 \%)
Current consumption power contacts	only load		only load		only load	typ. 1 mA +	
Current consumpt. K-bus	typ. 5 mA		typ. 3 mA		typ. 8 mA	typ. 10 mA	
Operating temperature	$-25 \ldots+60^{\circ}$		$0 \ldots+55^{\circ} \mathrm{C}$		$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$	
Approvals	CE, UL, Ex,		CE, UL, Ex		CE, UL, Ex, GL	CE, UL, Ex,	
Weight	approx. 55		approx. 50 g		approx. 55 g	approx. 60	
Further information	www.beckh	com/KL1104	www.beckh	com/KL1304	www.beckhoff.com/KL1212	www.beckh	com/KL1804
Special terminals							
Distinguishing features							

2-channel digital input terminal, 24 V DC, 4-wire, type $1 / 3$	2-channel digital input terminal, 24 V DC, 4-wire, type $1 / 3$		2-channel digital input terminal, 24 V DC, 4-wire, type 2		16-channel digital input terminal, 24 V DC, 1-wire, flat-ribbon cable connection, type $1 / 3$	
KL1002 \| KL1012 \| KS1002 KS1012	$\begin{aligned} & \hline \text { KL1402 \| } \\ & \text { KS1402 } \end{aligned}$	$\begin{aligned} & \hline \text { KL1412 \| } \\ & \text { KS1412 } \end{aligned}$	$\begin{aligned} & \hline \text { KL1302 \| } \\ & \text { KS1302 } \end{aligned}$	$\begin{aligned} & \hline \text { KL1312 \| } \\ & \text { KS1312 } \end{aligned}$	KL1862	KL1872
4-wire					flat-ribbon cable	
			EN 61131-2, type 2		EN 61131-2, type 1/3	
typ. 3.0 ms typ. 0.2 ms	typ. 3.0 ms	typ. 0.2 ms	typ. 3.0 ms	typ. 0.2 ms	typ. 3.0 ms	typ. 0.2 ms
2	2		2		16	
The KL1002 and KL1012 digital input terminals have two inputs, which are suitable for the connection of 4 -wire sensors.	The current/voltage characteristics have been optimised for 4-wire sensors. The input current in low state is increased to a minimum value of 1.5 mA and therefore supports the majority of commercially available 4 -wire sensors. A typical value for the energy-saving high current is 2.2 mA .		The KL1302 and KL1312 digital input terminals have two inputs, which are suitable for the connection of 4-wire sensors. The terminals are especially suitable for sensors which require a high quiescent current.			
24 V DC (-15 \%/+20 \%)	24 V DC (-15	\%)	24 V DC (-15 \%/+20 \%)		24 V DC (-15 \%/+20 \%)	
only load	typ. 1 mA +		only load		typ. 4 mA from the 24 V supply (no power contacts)	
typ. 3 mA	typ. 3 mA		typ. 3 mA		typ. 3 mA	
$-25 \ldots+60^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$		$0 . . .+55^{\circ} \mathrm{C}$		$0 \ldots+55^{\circ} \mathrm{C}$	
CE, UL, Ex, GL	CE, UL, Ex,		CE, UL, Ex		CE, UL, Ex	
approx. 50 g	approx. 50 g		approx. 50 g		approx. 50 g	
www.beckhoff.com/KL1002	www.beckh	KL1402	www.beckhoff.com/KL1302		www.beckhoff.com/KL1862	
					KL1862-0010	
					negative sw	596

Digital input | 24 V DC, negative switching

	8-channel digital input terminal, 24 V DC, 1-wire		16-channel digital input terminal, 24 V DC, 1-wire	4-channel digital input terminal, 24 V DC, 2-13-wire		16-channel digital input terminal, 24 V DC, 1 -wire, flat-ribbon cable
Technical data	KL1488 \| KS1488	$\begin{aligned} & \text { KL1498\| } \\ & \text { KS1498 } \end{aligned}$	KL1889	$\begin{aligned} & \text { KL1184\| } \\ & \text { KS1184 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { KL1194\| } \\ & \text { KS1194 } \end{aligned}$	KL1862-0010
Connection technology	1-wire			2-13-wire		flat-ribbon cable
Specification	negative switching					
Input filter	typ. 3.0 ms	typ. 0.2 ms	typ. 3.0 ms	typ. 3.0 ms	typ. 0.2 ms	typ. 3.0 ms
Number of inputs	8		16	4		16
	The negative switching KL1488 and KL1498 digital input terminals are suitable for the connection of eight sensors by 1 -wire technology.		The HD (High Density) Bus Terminals with higher packing density contain 16 terminal points housed in a 12 mm terminal block.	Negative switching sensors can be connected to the KL1184 and KL1194 digital input terminals.		A 20-pin plug connector with 2.54 mm contact spacing enables the secure connection of plug connectors using insulation displacement contact, as is usual for ribbon cables and special round cables. The required 24 V DC voltage supply must be input by the ribbon cable or the terminal points.
Nominal voltage	24 V DC (-1	/+20 \%)	24 V DC (-15 \%/+20 \%)	24 V DC (-15	/+20 \%)	24 V DC (-15 \%/+20 \%)
Current consumption power contacts	typ. 2 mA +		typ. 4 mA + load	only load		typ. 4 mA from the 24 V supply (no power contacts)
Current consumpt. K-bus	typ. 5 mA		typ. 20 mA	typ. 8 mA		typ. 3 mA
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$		$0 . .+55^{\circ} \mathrm{C}$	$0 . . .+55^{\circ} \mathrm{C}$		$0 . . .+55^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex		CE, UL, Ex, GL	CE, UL, Ex		CE
Weight	approx. 55		approx. 55 g	approx. 55 g		approx. 50 g
Further information	www.beckh	com/KL1488	www.beckhoff.com/KL1889	www.beckh	com/KL1184	www.beckhoff.com/KL1862
Special terminals						KL1862
Distinguishing features						positive switching 595

Digital input | 24 V DC, positive/negative switching

Digital input | 5... 230 V

Rather than the usual 24 V DC control voltage, additional voltage range/potentials are implemented for sensors and actuators. The digital input terminals from the signal range $5 \ldots 230 \mathrm{~V}$ allow direct input of these special sensor/actuator supplies without a further level conversion. The Bus Terminals are separately supplied with the corresponding control voltage by a power feed terminal, so that a Bus Terminal station can be operated with various different potential groups.

KL9xxx power feed terminals see page $\quad 674$

	4-channel digital input terminal, 5 V DC, 2-/3-wire	2-channel digital input terminal, 48 V DC, 4-wire, type 1
Technical data	KL1124 \| KS1124	KL1032 \| KS1032
Connection technology	2-/3-wire	4-wire
Signal voltage logic "0"	CMOS ($<0.8 \mathrm{~V}$)	-6... +34 V
Signal voltage logic "1"	CMOS (> 2.4 V)	$34 . . .60 \mathrm{~V}$
Input filter	typ. 0.2 ms	typ. 3.0 ms
Number of inputs	4	2
	The KL1124 digital input terminal is suitable for the reading of 5 V DC logic signals. The 5 V DC supply voltage can be generated with the KL9505 power supply unit terminal and fed in via the power contacts.	The KL1032 digital input terminal is suitable for the reading of 48 V DC logic signals.
Nominal voltage	5 V DC	48 V DC (-15 \%/+20 \%)
Current consumption power contacts	typ. 1 mA + load	-
Current consumpt. K-bus	typ. 5 mA	typ. 3 mA
Electrical isolation	500 V (K-bus/field potential)	500 V (K-bus/field potential)
Special features	supply 5 V DC via power contacts	further voltage values on request
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex	CE, UL, Ex, GL
Weight	approx. 50 g	approx. 50 g
Further information	www.beckhoff.com/KL1124	www.beckhoff.com/KL1032
Special terminals		
Distinguishing features		

2-channel digital input terminal, 60 V DC, 4-wire, type 1	2-channel digital input terminal, 120 V AC/DC, 4-wire, type 1	2-channel digital input terminal, 120/230 V AC, 4-wire, type 1	2-channel digital input terminal, 120/230 V AC, 2-wire, type 1
KL1712-0060 \| KS1712-0060	KL1712 \| KS1712	KL1702 \| KS1702	KL1722 \| KS1722
			2-wire
$0 . . .20 \mathrm{~V}$	$0 . . .40 \mathrm{~V}$	$0 . . .40 \mathrm{~V}$	$0 . . .40 \mathrm{~V}$
$40 . . .70 \mathrm{~V}$	$80 . .140 \mathrm{~V}$	79... 260 V	79... 260 V
typ. 10 ms	typ. 10 ms	typ. 10 ms	typ. 10 ms
2	2	2	2
The KL1712-0060 digital input terminal is suitable for the reading of $60 \mathrm{~V} \mathrm{DC} \mathrm{logic} \mathrm{signals}$.	The KL1712 digital input terminal is suitable for the acquisition of direct and alternating voltage logic signals.	The KL1702 digital input terminal is suitable for the acquisition of logic signals in the alternating voltage range from $120 . . .230 \mathrm{~V} \mathrm{AC}$.	The KL1722 digital input terminal does not have a power contact, so that individual potential groups can be built up. The voltage between input 1 and input 2 must not exceed 230 VAC .
60 V DC	$120 \mathrm{~V} \mathrm{AC/DC}$	120/230 V AC	120/230 V AC
-	-	-	-
typ. 3 mA	typ. 3 mA	typ. 3 mA	typ. 3 mA
500 V (K-bus/mains voltage); 3,750 V AC, 1 min.	500 V (K-bus/mains voltage); 3,750 V AC, 1 min.	500 V (K-bus/mains voltage); 3,750 V AC, 1 min.	500 V (K-bus/mains voltage); 3,750 V AC, 1 min.
60 V DC rail applications	120 V AC power grids	ohmic/capacitive input behaviour	ohmic/capacitive input behaviour
$0 \ldots+55^{\circ} \mathrm{C}$	$0 . . .+55^{\circ} \mathrm{C}$	$0 . . .+55^{\circ} \mathrm{C}$	$0 . . .+55^{\circ} \mathrm{C}$
CE	CE, UL, Ex	CE, UL, Ex	CE, UL, Ex
approx. 60 g	approx. 60 g	approx. 60 g	approx. 60 g
www.beckhoff.com/KL1712-0060	www.beckhoff.com/KL1712	www.beckhoff.com/KL1702	www.beckhoff.com/KL1722
	KL1712-0010	KL1702-0010	
	24 V AC/DC input circuit	230 V AC input circuit with type 2 characteristics	

Digital input | 24 V DC, terminal modules

	16-channel digital input module, 24 V DC, plug connector, type 1		32-channel digital input module, 24 V DC, plug connector, type 1		64-channel digital input module, 24 V DC, plug connector, type 1			
Technical data	KM1002	KM1012	KM1004	KM1014	KM1008		KM1018	
Connection technology	plug							
Specification	EN 61131-2, type 1							
Input filter	typ. $3.0 \mathrm{~ms}$	$\begin{aligned} & \text { typ. } \\ & 0.2 \text { ms } \end{aligned}$	typ. 3.0 ms	typ. 0.2 ms	typ. 3.0 ms		typ. 0.2 ms	
Number of inputs	16 ($\times 8$)		$32(4 \times 8)$		64 (8x8)			
Nominal voltage	24 V DC (-15 \%/+20 \%)		24 V DC (-15 \%/+20 \%)		24 V DC (-15 \%/+20 \%)			
Current consumption power contacts	- (no power contacts)		- (no power contacts)		- (no power contacts)			
Current consumpt. K-bus	typ. 3 mA		typ. 3 mA		typ. 3 mA			
Operating temperature	$0 . .+55^{\circ} \mathrm{C}$		$0 \ldots+55^{\circ} \mathrm{C}$		$0 \ldots+55^{\circ} \mathrm{C}$			
Approvals	CE		CE		CE			
Weight	approx. 90 g with 1 -pin connector, approx. 110 g with 3-pin connector		approx. 90 g with 1 -pin connector, approx. 110 g with 3 -pin connector		approx. 310 g with 1 -pin connector, approx. 390 g with 3 -pin connector			
Further information	www.beckhoff.com/ KM1002		www.beckhoff.com/KM1004		www.beckhoff.com/KM1008			
Special terminals	KM10x2-000x		KM10x4-000x		KM10x8-000x			
Distinguishing features	different connectors		different connectors		different connectors			

Digital input | Manual operation

Manual input of process data directly to the terminal is suitable for example for:

- training and test installations
- emergency operating levels in buildings
- operating levels in the control cabinet
- program development/simulation It is possible to have a response directly on the module by the LEDs controlled by the process image.

Together with the following terminals, further manual operational functions can be implemented:

- KL2641|1-channel relay output terminal, 230 V AC, 16 A, bistable, manual operation, see page 614
- KM2642, KM2652| 2-channel relay module, $230 \mathrm{~V} \mathrm{AC}, 6 \mathrm{~A}$, manual/automatic operation, see page 617
- KM2614|4-channel relay module, $230 \mathrm{~V} \mathrm{AC}, 16 \mathrm{~A}$, automatic operation/ manual operation on the relay, see page 616
- KM4602|2-channel analog output terminal, $0 \ldots 10 \mathrm{~V}$, manual/automatic operation, see page 651

The manual operating modules of the KL85xx series (see page 670) are installed in the control cabinet door. This way, the modules can be operated without having to open the control cabinet.

Digital input | Special functions

A specific alignment of the logic signals to the application is possible with the special terminals. The signal is either pre-processed inside the terminal or prepared as far as possible by a specialised input circuit, so that no additional module needs to be switched between sensor and Bus Terminal.

The KL1362, KL1382 and KL1352 Bus Terminals generate a voltage internally for sensor supply. Depending on the logical state of the sensor this changes the current or the voltage. The Bus Terminal evaluates this state and transmits it to the process image of the controller. If required, a diagnostic for wiring breaks and short-circuits is available in the event of a fault.

	2-channel digital input terminal, 24 V DC, with edge triggered pulse expansion
Technical data	KL1232 \| KS1232
Connection technology	4 -wire
Specification	pulse expansion
Input filter	0.2 ms
Number of inputs	2
	The KL1232 has an input circuit that extends plus-switched signals, triggered on the rising edge, to 100 ms . The KL1232 is particularly suitable for recording very short signals in control systems with a longer processing time than the signal length.
Nominal voltage	24 V DC (-15 \%/+20 \%)
"0" signal voltage	$-3 . .+5 \mathrm{~V}$
"1" signal voltage	$15 . .30 \mathrm{~V}$
Current consumption power contacts	-
Current consumpt. K-bus	typ. 5 mA
Special features	edge triggered pulse expansion
Operating temperature	$0 . . .+55^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex
Weight	approx. 55 g
Further information	www.beckhoff.com/KL1232
Special terminals	KL1232-xxxx
Distinguishing features	special terminals see page 685

Digital input | Counters

Pulses often need to be captured in technical control applications. If the pulse length is the order of magnitude of the control cycle time or less, the controller cannot record these signals correctly any more. Pre-processing is then required. The "counter terminals" can count the number of pulses and deliver reliable values to the controller, even though the controller cannot capture the pulse at that speed. The counter is adapted to the individual requirements, such as forwards/backwards counter or Gate/Latch-controlled, by parameterisation. With a counter depth of 16 - or 32-bit an overflow, even at high frequencies, can easily be managed by the controller.

The KL1501 is optimised for particularly fast signals. On this basis, other input voltages and special pre-processing are available with special varieties of terminals. The KL1512 is developed for price-sensitive areas of application and has certain limitations in relation to speed, bit width and functionality.

	Up/down counter, 24 V DC, $100 \mathrm{kHz}, 32$ bit	Up/down counter, 24 V DC, 1 kHz, 16 bit
Technical data	KL1501 \| KS1501	KL1512 \| KS1512
Input filter	-	0.2 ms
Number of inputs	2	
	The up/down counter counts binary pulses, and transmits the counter state, in an electrically isolated form, to the higher-level automation device. In the KL1501 Bus Terminal it is possible to choose the (32-bit) counting direction (forwards/backwards) using the forwards/ backwards input, and the gate connection can be used to trigger the counter.	In the KL1512 digital input terminal it is possible to choose forwards or backwards counter (16-bit) direction. It is particularly suitable for simple counting tasks.
Nominal voltage	24 V DC (-15 \%/+20 \%)	24 V DC (-15 \%/+20 \%)
"0" signal voltage	-3...+5V	-3...+5 V
"1" signal voltage	$15 . .30 \mathrm{~V}$	$15 . . .30 \mathrm{~V}$
Current consum. pow. cont.	-	-
Current consumpt. K-bus	typ. 50 mA	typ. 50 mA
Counting frequency	max. 100 kHz (2 kHz for switching up and down)	max. 1 kHz
Max. output current	0.5 A typ. (short-circuit-proof) per channel	-
Counter depth	32 bit	16 bit
Special features	2 additional outputs	-
Operating temperature	$-25 . . .60^{\circ} \mathrm{C}$	$-25 . .+60^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex	CE, UL, Ex
Weight	approx. 50 g	approx. 55 g
Further information	www.beckhoff.com/KL1501	www.beckhoff.com/KL1512
Special terminals	KL1501-001x	
Distinguishing features	special terminals see 685	

Digital input | TwinSAFE

The KL1904 safety Bus Terminal is a digital input terminal for sensors with potential-free 24 V DC contacts and comprises four fail-safe inputs. The KL1904 meets the requirements of DIN EN ISO 13849-1:2008 (Cat 4, PL e) and IEC 61508:2010 (SIL 3).

For further information on TwinSAFE and the TwinSAFE products see page 966

Protocol	TwinSAFE/Safety over EtherCAT
Nominal voltage	$24 \mathrm{~V} \mathrm{DC}(-15 \% /+20 \%)$
Current consumption power contacts	-
Current consumpt. K-bus	48 mA
Response time	typ. 4 ms (read input/write to K-bus)
Fault response time	\leq watchdog time (parameterisable)
Permitted degree of contamination	2
Climate class EN 60721-3-3	$3 \mathrm{K3}$
Installation position	horizontal
Special features	4 safe inputs
Operating temperature	$0 . . .+55^{\circ} \mathrm{C}$
EMC immunity/emission	conforms to EN 61000-6-2/EN 61000-6-4
Vibration/shock resistance	conforms to EN 60068-2-6/EN 60068-2-27
Approvals	CE, UL, Ex, TÜV SÜD
Weight	approx. 50 g
Protection class	IP 20
Further information	www.beckhoff.com/KL1904

Digital output | 24 V DC, positive switching

Many actuators are driven or controlled with 24 V DC. The Bus Terminals of the "positive switching" category switch all output channels to 24 V DC, so all connected actuators are hard-wired to ground (0 V). The output of a Bus Terminal can be considered as a functional 24 V DC relay contact. The output circuit offers further functions such as short-circuit-current limitation, short-circuit switchoff and the rapid depletion of inductive energy from the coil.

The most common output circuit delivers a maximum continuous current of 0.5 A . Special output terminals are available for higher currents. Any type of load (ohmic, capacitive, inductive) can be connected to an output terminal. As lamp and capacitive loads are critical due to their high starting currents, they are limited by the output circuits of the Bus Terminals. This ensures that the upstream circuit-breaker is not triggered. Inductive loads are problematic at switch-off, as high induction voltages develop if the current is interrupted too fast. An integrated freewheeling diode prevents this voltage peak. However, the current is reduced so slowly that it leads to faults in many technical control applications. For example, a valve remains open for many milliseconds. The Bus Terminals represent a compromise between prevention of overvoltage and rapid switch-off. They suppress the induction voltage to about 24 V DC and realise switch-off times which approximately correspond to the switch-on time of the coil.

In the case of short-circuit, the output circuit limits the current and prevents the activation of the upstream circuit-breaker. The Bus Terminal maintains this current until important self-heating and finally switches off. After the circuit has cooled, it switches back on. The output signal is driven in time until the output of the controller is switched off or the short-circuit is rectified. The clock frequency depends on the ambient temperature and the load of the other terminal channels. The overload protection of the output is also realised by thermal switch-off. The total current specified should be observed. If a total current is not given, it is not limited.

8-channel digital	16-channel digital
output terminal,	output terminal, 24 V DC, 1-wire

Technical data	KL2408 \| KS2408
Connection technology	1-wire
Load type	ohmic, inductive, lamp load
Max. output current	0.5 A (short-circuit-proof) per channel
Number of outputs	8

The KL2408 digital output terminal has 8 outputs, each one is assigned a terminal point. This way, a high packing density can be achieved for actuators with common ground potential.

Nominal voltage	$24 \mathrm{~V} \mathrm{DC}(-15 \% /+20 \%)$	$24 \mathrm{~V} \mathrm{DC}(-15 \% /+20 \%)$
Current consumption power contacts	typ. $60 \mathrm{~mA}+$ load	typ. $35 \mathrm{~mA}+$ load
Current consumpt. K-bus	typ. 18 mA	typ. 35 mA
Breaking energy	$<150 \mathrm{~mJ} /$ channel	$<150 \mathrm{~mJ} /$ channel
Reverse voltage protection	yes	yes
Short circuit current	$<2 \mathrm{~A}$	$<2 \mathrm{~A}$
Operating temperature	$-25 \ldots+60^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$
Approvals	$\mathrm{CE}, \mathrm{UL}, \mathrm{Ex}, \mathrm{GL}$	$\mathrm{CE}, \mathrm{UL}, \mathrm{Ex}, \mathrm{GL}$
Weight	approx. 70 g	
Further information	www.beckhoff.com/KL2408	www.beckhoff.com/KL2809

16-channel digital output terminal, 24 V DC, 1-wire, with diagnostics	8-channel digital input + 8-channel digital output, 24 V DC, 1-wire	4-channel digital output terminal, 24 V DC, 2-wire		8-channel digital output terminal, 24 V DC, 2-wire	8-channel digital output terminal, 24 V DC, 2-wire
KL2819	KL1859	$\begin{aligned} & \text { KL2404 \| } \\ & \text { KS2404 } \end{aligned}$	$\begin{aligned} & \text { KL2424 \| } \\ & \text { KS2424 } \end{aligned}$	KL2808	KL2828
		2-wire			
					ohmic, inductive, capacitive
0.5 A (short-circuit-proof) per channel	0.5 A (short-circuit-proof) per channel	0.5 A (short-circuit-proof) per channel	2.0 A (short-circuit-proof) per channel	0.5 A (short-circuit-proof) per channel	$2 \mathrm{~A}\left(\sum 10 \mathrm{~A}\right)$
16	8 outputs +8 inputs	4		8	8
The KL2819 HD (High Density) Bus Terminal has 16 digital outputs and is suitable for applications in which a very high packing density is required. Diagnostic information on overtemperature and lack of voltage supply are evaluated by the controller.	The KL1859 digital Bus Terminal combines eight digital inputs and eight digital outputs in one device. - number of inputs: 8 - input filter: 3.0 ms - type $1 / 3$			The KL2808 High Density Bus Terminal contains eight outputs and eight ground connection points for the connection of 2-wire actuators and thus allows a very high packing density.	The KL2828 High Density Bus Terminal contains eight outputs and eight ground connection points for the connection of 2-wire actuators and thus allows a very high packing density.
24 V DC (-15 \%/+20 \%)	24 V DC (-15 \%/+20 \%)	24 V DC (-15	\%/+20 \%)	24 V DC (-15 \%/+20 \%)	24 V DC (-15 \%/+20 \%)
typ. $50 \mathrm{~mA}+$ load	typ. $15 \mathrm{~mA}+$ load	typ. $30 \mathrm{~mA}+$		typ. $15 \mathrm{~mA}+$ load	typ. $15 \mathrm{~mA}+$ load
typ. 80 mA	typ. 25 mA	typ. 9 mA		typ. 20 mA	typ. 18 mA
< $150 \mathrm{~mJ} /$ channel	$<150 \mathrm{~mJ} /$ channel	$\text { < } 150 \mathrm{~mJ} /$ channel	$<1.7 \mathrm{~J} /$ channel	< $150 \mathrm{~mJ} /$ channel	$<1.2 \mathrm{~J} /$ channel
yes	yes	yes		yes	yes
< typ. 1 A	$<2 \mathrm{~A}$	$<2 \mathrm{~A}$	$<70 \mathrm{~A}$	$<2 \mathrm{~A}$	< 40 A typ.
$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$		$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$
CE	CE, UL, Ex, GL	CE, UL, Ex	$\begin{aligned} & \text { CE, UL, Ex, } \\ & \text { GL } \end{aligned}$	CE, UL, Ex, GL	CE
approx. 70 g	approx. 60 g	approx. 70 g		approx. 65 g	approx. 70 g
www.beckhoff.com/KL2819	www.beckhoff.com/KL1859	www.beckhoff.com/KL2404		www.beckhoff.com/KL2808	www.beckhoff.com/KL2828

Digital output | 24 V DC, positive switching

	4-channel digital output terminal, 24 V DC, 2-/3-wire	4-channel digital output terminal, 24 V DC, 2-/3-wire	2-channel digital output terminal, 24 V DC, 3-wire	2-channel digital output terminal, 24 V DC, 4-wire
Technical data	KL2114 \| KS2114	KL2134 \| KS2134	KL2442	KL2032 \| KS2032
Connection technology	2-/3-wire		3-wire	4-wire
Load type	ohmic, inductive, lamp load			
Max. output current	0.5 A (short-circuit-proof) per channel	0.5 A (short-circuit-proof) per channel	4.0 A (short-circuit-proof) per channel, 8 A for parallel connection	0.5 A (short-circuit-proof) per channel
Number of outputs	4	4	2	2
	The KL2114 digital output terminal connects the control signals to the actuators in an electrically isolated manner.	The KL2134 digital output terminal connects the control signals to the actuators in an electrically isolated manner. It is protected against reverse polarity connection.	The KL2442 is suitable for the connection of actuators with high current requirement of 4 A . For parallel switched outputs, even 8 A is possible.	The KL2032 digital output terminal connects the control signals to the actuators in an electrically isolated manner.
Nominal voltage	24 V DC (-15 \%/+20 \%)			
Current consumption power contacts	typ. $30 \mathrm{~mA}+$ load	typ. $30 \mathrm{~mA}+$ load	typ. $30 \mathrm{~mA}+$ load	typ. $20 \mathrm{~mA}+$ load
Current consumpt. K-bus	typ. 9 mA	typ. 9 mA	typ. 9 mA	typ. 5 mA
Breaking energy	< $150 \mathrm{~mJ} /$ channel	$<150 \mathrm{~mJ} /$ channel	no data	$<150 \mathrm{~mJ} /$ channel
Reverse voltage protection	-	yes	yes	yes
Short circuit current	$<2 \mathrm{~A}$	$<2 \mathrm{~A}$	$<70 \mathrm{~A}$	$<2 \mathrm{~A}$
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex	CE, UL, Ex, GL	CE	CE, UL, Ex, GL
Weight	approx. 70 g	approx. 70 g	approx. 70 g	approx. 55 g
Further information	www.beckhoff.com/KL2114	www.beckhoff.com/KL2134	www.beckhoff.com/KL2442	www.beckhoff.com/KL2032
Special terminals				
Distinguishing features				

Digital output | 24 V DC, terminal modules

Digital output \| 5 V DC, positive switching

The KL2124 digital output terminal connects the binary control signals from the automation unit on to the actuators at the process level with electrical isolation. The load current outputs of the KL2124 version are protected against overload and short-circuit. The Bus Terminal contains four channels that indicate their signal state by means of light emitting diodes.

Digital output | 24 V DC, negative switching

	8-channel digital output terminal, 24 V DC, 1-wire	16-channel digital output terminal, 24 V DC, 1-wire	4-channel digital output terminal, 24 V DC, 2-13-wire	16-channel digital output terminal, 24 V DC, flat-ribbon cable connection
Technical data	KL2488 \| KS2488	KL2889	KL2184 \| KS2184	KL2872-0010
Connection technology	1-wire		2-13-wire	flat-ribbon cable
Load type	ohmic, inductive, lamp load			
Max. output current	0.5 A (short-circuit-proof) per channel			
Number of outputs	8	16	4	16
	The KL2488 digital output terminal is suitable for the connection of eight negative switching actuators using 1 -wire connection technology.	The KL2889 HD (High Density) Bus Terminal offers terminal points for 16 negative switching actuators using 1-wire connection technology and thus a very high packing density.	The KL2184 digital output terminal offers four outputs and additionally provides 24 V DC and ground (0 V) for each channel.	A 20-pin plug connector with 2.54 mm contact spacing enables the secure connection of plug connectors using insulation displacement contact, as is usual for ribbon cables and special round cables. The required 24 V DC voltage supply must be input by the ribbon cable or the terminal points 1 and 2.
Nominal voltage	24 V DC (-15 \%/+20 \%)			
Current consumption power contacts	typ. $60 \mathrm{~mA}+$ load	typ. $35 \mathrm{~mA}+$ load	typ. $30 \mathrm{~mA}+$ load	typ. 60 mA from the supply (no power contacts)
Current consumpt. K-bus	typ. 18 mA	typ. 45 mA	typ. 9 mA	typ. 5 mA
Breaking energy	< $100 \mathrm{~mJ} /$ channel			
Reverse voltage protection	yes	yes	yes	yes
Short circuit current	$<7 \mathrm{~A}$	$<7 \mathrm{~A}$	$<7 \mathrm{~A}$	<7 A
Operating temperature	$0 . .+55^{\circ} \mathrm{C}$	$0 . . .+55^{\circ} \mathrm{C}$	$0 . . .+55^{\circ} \mathrm{C}$	$0 . . .+55^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex	CE, UL, Ex, GL	CE, UL, Ex	CE, Ex
Weight	approx. 70 g	approx. 70 g	approx. 70 g	approx. 55 g
Further information	www.beckhoff.com/KL2488	www.beckhoff.com/KL2889	www.beckhoff.com/KL2184	www.beckhoff.com/KL2872

Digital output | 30 V AC/DC, solid state relays

The KL2784, KL2794 and KL2798 digital output terminals each provide four (KL27×4) or eight (KL2798) switches, which can be used like a relay contact for AC/DC voltages. The KL2784 uses a power contact as a common potential. In the KL2794 and KL2798, the power contacts are passed directly to the circuit without connection.

The electronic switch in the Bus Terminal is implemented by efficient MOSFET transistors with a low switch-on resistance. The electronics are virtually wear-free. The switch itself is not short-circuit-proof, but can conduct a high current with its high pulse current capability long enough, until the circuit-breaker switches off. It behaves like a robust relay contact.

Inductive loads can be switched directly, without further safety measures. The circuit switches relatively slowly and prevents high peak voltages. No break sparks are created in the terminal and thus no electromagnetic interference pulse.

	4-channel digital output terminal, 30 V AC/DC, solid state relay	4-channel digital output terminal, 30 V AC/DC, solid state relay, potential-free	8-channel digital output terminal, 30 V AC/DC, solid-state relay
Technical data	KL2784 \| KS2784	KL2794 \| KS2794	KL2798
Connection technology	2-wire		
Load type	AC/DC loads		
Max. output current	2 A	2 A	2 A
Number of outputs	$4 \times$ make contacts	$4 \times$ make contacts	$8 \times$ make contacts
	4 electronic switches on the power contact	4 potential-free electronic switches	8 potential-free electronic switches
Nominal voltage	0... $30 \mathrm{~V} \mathrm{AC/DC}$ (only ohmic load: $0 . . .48 \mathrm{~V}$ DC)	0... $30 \mathrm{~V} \mathrm{AC/DC}$ (only ohmic load: $0 . . .48 \mathrm{~V}$ DC)	$0 . .30 \mathrm{~V} \mathrm{AC/DC}$ (only ohmic load: $0 . . .48 \mathrm{~V}$ DC)
Current consum. pow. cont.	only load	-	-
Current consumpt. K-bus	80 mA	80 mA	80 mA
Breaking energy	no data	no data	no data
Short circuit current	90 A	90 A	$5 \mathrm{~A}(100 \mathrm{~ms}),<50 \mathrm{~A}$ (10 ms), observe the cut-off characteristic of the fuse
Surge voltage protection	$>39 \mathrm{~V}$	$>39 \mathrm{~V}$	$>39 \mathrm{~V}$
Peak current	$\begin{aligned} & 5 \mathrm{~A}(100 \mathrm{~ms}), \\ & <50 \mathrm{~A}(10 \mathrm{~ms}) \end{aligned}$	$\begin{aligned} & 5 \mathrm{~A}(100 \mathrm{~ms}) \\ & <50 \mathrm{~A}(10 \mathrm{~ms}) \end{aligned}$	$\begin{aligned} & 5 \mathrm{~A}(100 \mathrm{~ms}), \\ & <50 \mathrm{~A}(10 \mathrm{~ms}) \end{aligned}$
On-resistance	typ. 0.03Ω	typ. 0.03Ω	typ. 0.03Ω
Switching on speed	typ. 1.8 ms, max. 5 ms	typ. 1.8 ms , max. 5 ms	typ. 1.8 ms , max. 5 ms
Switching off speed	typ. 30 ms , max. 50 ms	typ. 30 ms , max. 50 ms	typ. 30 ms , max. 50 ms
Special features	alternative for relay contacts	alternative for relay contacts, potential-free	substitute for relay contacts, potential-free
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$
Approvals	CE, Ex	CE, Ex	CE
Weight	approx. 70 g	approx. 70 g	approx. 70 g
Further information	www.beckhoff.com/ KL2784	www.beckhoff.com/ KL2794	www.beckhoff.com/ KL2798

Digital output | Relay outputs up to 400 V AC

The Bus Terminals switch a relay as a function of the bits in the process image. The relays completely isolate the current flow by a mechanical contact; there is no residual current through the open contact. The Bus Terminals are not equipped with a protective circuit, so as not to allow for residual current by parallel switched components. The relay contacts differ in their contact material. Signal contacts also switch small voltages and currents; large current here lead to a change in the contact characteristics. Power contacts can switch large loads. A oxide layer on the power contacts prevents safe contact for small voltages below 1 V DC.

Switching on is accompanied by a bouncing. The electrical connection is initially switched on and off briefly, until the contact is securely in its closed location. With an inductive load (coil) this behaviour leads to a spark and to corresponding electromagnetic radiation. Capacitive loads create a short-circuit for a brief period of time. This can - particularly with alternating voltages - lead to such high switch-on currents at switch-on under peak value that the bouncing contact is burned shut. A capacitive load can also be electronic devices, which are typically equipped with a rectifier in the input and a relatively large smoothing capacitor. Electronic ballast is especially critical for fluorescent lamps. The maximum switch-on currents of the devices, which should be observed, are shown in the technical data numerous times.

The switch-off of a relay takes place by mechanical opening the contact. An arc burns for a short moment and warms the contact. For an inductive load (coil) a large part of the magnetic energy stored in the coil is additionally released as heat at the contact. This load on the contact determines the service life of the relay and is called the electrical service life. The mechanical service life is defined as the number of switching operations without current flow through the contact.

2-channel relay output terminal,
125 V AC

1-channel relay output terminal,
230 V AC, bistable,
manual operation

Technical data	KL2612 \| KS2612	KL2641
Load type	ohmic	ohmic, inductive, lamp load
Max. output current	2 A	16 A
Number of outputs	2 x change-over	1 make contact
	The KL2612 Bus Terminal is equipped with potentialfree contacts.	The KL2641 output terminal has a relay with a single contact, which can be used universally for the switching of mains voltage consumers. The relay can optionally be switched in manual or automatic mode.
Nominal voltage	$125 \mathrm{~V} \mathrm{AC/30} \mathrm{~V} \mathrm{DC}$	230 V AC (max. switching voltage 440 V AC)
Current consum. pow. cont.	- (no power contacts)	typ $65 \mathrm{~mA}+$ load
Current consumpt. K-bus	typ. 60 mA	typ. 5 mA
Switching current	0.5 A AC/2 A DC (ohmic)	16 A AC
Operat. cycles mech. (min.)	1×10^{8}	1×10^{6}
Operat. cycles electr. (min.)	2×10^{5} (1 A/30 V DC)	no data
Lamp test, electronic ballast	max. 2 A starting current	max. 16 A starting current
Minimum permitted load	$10 \mu \mathrm{~A}$ at 10 mV	-
Special features	signal relay	manual operation; bistable relay contact
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex, GL	CE
Weight	approx. 80 g	approx. 110 g
Further information	www.beckhoff.com/KL2612	www.beckhoff.com/KL2641

Digital output | Relay outputs up to 400 V AC

	4-channel relay module, $230 \mathrm{~V} \mathrm{AC}$	4-channel relay module, 230 V AC, automatic/manual operation
Technical data	KM2604	KM2614
Load type	ohmic, inductive, lamp load	
Max. output current	16 A	
Number of outputs	4 x change-over	4 x change-over
	The KM2604 terminal module combines four pluggable power relays in one fieldbus module. The high switching capacity of 16 A at 230 V AC enables direct mains connection of consumers with high current consumption. The relays are positioned at the top and can therefore be exchanged easily.	The KM2614 terminal module combines four pluggable power relays in one fieldbus module. The high switching capacity of 16 A at 230 V AC enables direct mains connection of consumers with high current consumption. The relays are positioned at the top and can therefore be exchanged easily. Each relay can be manually switched to the ON status. A seal indicates the initial manual operation.
Nominal voltage	230 VAC (max. switching voltage $250 \mathrm{~V} \mathrm{AC/30} \mathrm{~V} \mathrm{DC)}$	$230 \mathrm{~V} \mathrm{AC} \mathrm{(max} .\mathrm{switching} \mathrm{voltage} 250 \mathrm{~V} \mathrm{AC/30} \mathrm{~V} \mathrm{DC)}$
Current consumption power contacts	- (no power contacts)	- (no power contacts)
Current consumpt. K-bus	typ. 15 mA	typ. 15 mA
Switching current	$16 \mathrm{~A} \mathrm{AC/12} \mathrm{~A} \mathrm{DC}$ at 30 V DC	$16 \mathrm{~A} \mathrm{AC/12} \mathrm{~A} \mathrm{DC}$ at 30 V DC
Operat. cycles mech. (min.)	5×10^{6}	5×10^{6}
Operat. cycles electr. (min.)	$1 \times 10^{6}(1 \mathrm{~A} / 250 \mathrm{VAC})$	1×10^{6} ($1 \mathrm{~A} / 250 \mathrm{VAC}$)
Lamp test, electronic ballast	max. 25 A starting current	max. 25 A starting current
Minimum permitted load	5 mA (10 V DC)	5 mA (10 V DC)
Special features	-	automatic/manual operation at the relay
Operating temperature	$0 . . .+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$
Approvals	CE	CE
Weight	approx. 250 g	approx. 250 g
Further information	www.beckhoff.com/KM2604	www.beckhoff.com/KM2614

$\left.\begin{array}{|l|l|l}2 \text {-channel relay module, } \\ 230 \mathrm{~V} \mathrm{AC,} \mathrm{manual/automatic} \\ \text { operation }\end{array} \quad \begin{array}{l}\text { 2-channel relay module, } \\ 230 \mathrm{VAC}, \text { manual/automatic } \\ \text { operation }\end{array}\right]$

6 A

2 x change-over

The digital KM2642 output terminal has two independent relay change-over contacts, which can be used for switching mains current consumers. For each channel a switch enables selection between automatic, manual on, manual off. In automatic mode the logical state of an output bit switches the relay. For manual mode a 24 V supply is required for the Bus Coupler. The output state can be read by the controller.
$2 x$ change-over

The digital KM2652 output terminal has two independent relay change-over contacts, which can be used for switching mains current consumers. For each channel a switch enables selection between automatic, manual on, manual off. In automatic mode the logical state of an output bit switches the relay. For manual mode a 24 V supply is required for the Bus Coupler. The state of the output and the switch can be read by the controller.

230 V AC (max. switching voltage 250 VAC)

- (no power contacts)

typ. 130 mA	typ. 130 mA
$6 \mathrm{~A} \mathrm{AC/4} \mathrm{~A} \mathrm{DC} \mathrm{at} 30 \mathrm{~V} \mathrm{DC}$	$6 \mathrm{~A} \mathrm{AC} / 4 \mathrm{~A} \mathrm{DC}$ at 30 V DC
1×10^{6}	1×10^{6}
$1 \times 10^{5}(3 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC})$	$1 \times 10^{5}(3 \mathrm{~A} / 250 \mathrm{VAC})$
max. 10 A starting current	max. 10 A starting current
$100 \mathrm{~mA}(12 \mathrm{~V} \mathrm{DC})$	$100 \mathrm{~mA}(12 \mathrm{~V} \mathrm{DC})$
manual/automatic operation	manual/automatic operation, switch setting readable
$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$
CE	CE
approx. 110 g	approx. 110 g
www.beckhoff.com/KM2642	www.beckhoff.com/KM2652

Digital output | Triac outputs up to 230 V AC

	2-channel triac output terminal, 12...230 V AC		2-channel triac output terminal, $12 . . .230 \mathrm{VAC}$	1-channel solid state load relay up to $230 \mathrm{VAC/DC}$
Technical data	KL2712 \| KS2712	KL2722 \| KS2722	KL2732 \| KS2732	KL2701 \| KS2701
Connection technology	4-wire		2-wire	2-13-14-wire
Load type	ohmic, inductive			
Max. output current	$2 \times 0.025 \ldots 0.5 \mathrm{~A}$	$1 \times 1 \mathrm{~A}$	$1 \times 1 \mathrm{~A}$	3 A steady load
Number of outputs	2 x make contacts		$2 \times$ make contacts	1 make contact
	The KL2712 and KL2722 output terminals use a power switch to control mains voltage from 12 V to 230 VAC . The switching element is a Triac which is connected to the power contact potential. As a semiconductor switch, it is not subject to wear.		The KL2732 output terminal uses a power switch to control mains voltage from 12 V to 230 V AC . The switching element is a Triac. As a semiconductor switch, it is not subject to wear.	The KL2701 output terminal uses an electronic load relay to switch a mains voltage of up to 230 V AC/DC. The switching element is a high-power MOSFET which is connected to the power contact potential. As a semiconductor switch, it is not subject to wear.
Nominal voltage	$12 \ldots 230 \mathrm{VAC}$		12...230 V AC	$0 \ldots 230 \mathrm{~V}$ ACIDC
Current consum. pow. cont.	only leakage and	d current	- (no power contacts)	only leakage and load current
Current consumpt. K-bus	typ. 10 mA		typ. 10 mA	typ. 65 mA
Switching times	0.1... 10 ms , zero	ssing	$0.1 \ldots 10 \mathrm{~ms}$, zero crossing	$1.5 . . .5 \mathrm{~ms}$
Frequency range	$47 . . .63 \mathrm{~Hz}$		$47 . . .63 \mathrm{~Hz}$	DC... 100 Hz
Surge voltage protection	>275 V AC		>275 V AC	from 400 V AC
Peak current	$40 \mathrm{~A}(16 \mathrm{~ms}), 1.5$	$30 \mathrm{~s})$	$40 \mathrm{~A}(16 \mathrm{~ms}), 3 \mathrm{~A}(30 \mathrm{~s})$	$5 \mathrm{~A}(20 \mathrm{~s}), 50 \mathrm{~A}(100 \mathrm{~ms})$
Leakage current (OFF state)	typ. 0.8 mA , max.	mA	typ. 0.8 mA , max. 1.5 mA	<<1 mA
Switch-off time	T/2		T/2	2... 4 ms
Maximum residual voltage	1.5 V		1.5 V	($100 \mathrm{~m} \Omega$)
Special features	reverse motors (bl		reverse motors (blinds)	-
Operating temperature	$0 . .+55^{\circ} \mathrm{C}$		$0 . . .+55^{\circ} \mathrm{C}$	$0 . . .+55^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex, GL	CE, Ex, GL	CE, GL	CE
Weight	approx. 55 g		approx. 55 g	approx. 55 g
Further information	www.beckhoff.con	L2712	www.beckhoff.com/KL2732	www.beckhoff.com/KL2701
Special terminals	KL27x2-0010		KL2732-0010	
Distinguishing features	special terminals s	page 685	special terminals see page 685	

2-channel solid state load relay up to 230 V AC/DC			4-channel triac output module for 4 blind motors
KL2702 \| KS2702	KL2702-0020	KL2702-0002	KM2774
			mixed
0.3 A steady load on each channel	1.5 A steady load on each channel	2 A steady load on each channel	1.5 A per channel
$2 \times$ make contacts	$2 \times$ make contacts	$2 \times$ make contacts, mutually locked	4×3 make contacts
The KL2702 output terminal uses an electronic load relay to switch a mains voltage of up to 230 V AC/DC. The switching element is a high-power MOSFET which is connected to the power contact potential. As a semiconductor switch, it is not subject to wear.			Mixed module 24 V DC/230 V AC for the direct control of blinds applications
$0 . .230 \mathrm{~V} \mathrm{AC/DC}$ (DC... 100 Hz)			$80 . .230 \mathrm{~V}$ AC
only leakage and load current			- (no power contacts)
typ. 10 mA	typ. 50 mA	typ. 50 mA	typ. 30 mA
$1.5 \ldots 5 \mathrm{~ms}$			$0.1 \ldots 10 \mathrm{~ms}$, zero crossing
DC... 100 Hz			50 Hz
from 400 V AC			$>275 \mathrm{~V} \mathrm{AC}$
$0.5 \mathrm{~A}(20 \mathrm{~s}), 1.5 \mathrm{~A}(100 \mathrm{~ms})$	$2.5 \mathrm{~A}(20 \mathrm{~s}), 7.5 \mathrm{~A}(100 \mathrm{~ms})$	$2.5 \mathrm{~A}(20 \mathrm{~s}), 7.5 \mathrm{~A}(100 \mathrm{~ms})$	$40 \mathrm{~A}(16 \mathrm{~ms}), 3 \mathrm{~A}(30 \mathrm{~s})$
$\ll 1 \mathrm{~mA}$			typ. 0.8 mA , max. 1.5 mA
$0.05 \ldots 0.1 \mathrm{~ms}$	$5 \ldots 8 \mathrm{~ms}$	$5 \ldots 8 \mathrm{~ms}$	T/2
(2.1 Ω)	$(200 \mathrm{~m} \Omega$)	(300 m	1.5 V
-			-
$0 . . .+55^{\circ} \mathrm{C}$			$0 \ldots+55^{\circ} \mathrm{C}$
CE, UL, Ex, GL	CE	CE	CE
approx. 55 g			approx. 270 g
www.beckhoff.com/KL2702			www.beckhoff.com/KM2774

Digital output | Cycle monitoring

The KL2692 Bus Terminal monitors a bit that is toggled by the controller during each cycle. If the toggle signal fails, the terminal switches off two potential-free relays in order to prevent damage to the machine. Failure of the toggle signal may be caused by the PLC cycle stopping, by a fault in the bus cable or connector, or by a fault in a bus device. The cycle monitoring time can be parameterised. The Bus Terminal has an enable input that enables the relay to be switched on if a correct toggle signal is detected.

	Cycle monitoring terminal (watchdog)
Technical data	KL2692 \| KS2692
Connection technology	2-wire
Max. output current	3 A
Number of outputs	2 potential-free relay outputs (normally-open contacts)
Number of inputs	2 digital 24 V inputs
Nominal voltage	30 V DC
Current consumption power contacts	-
Current consumpt. K-bus	approx. 165 mA
Switching times	parameterisable
Ohmic switching current	5 A AC/DC
Inductive switching current	2 A AC/DC
Operat. cycles mech. (min.)	2×10^{7}
Operat. cycles electr. (min.)	$1 \times 10^{5}(5 \mathrm{~A} / 30 \mathrm{VDC})$
Minimum permitted load	10 mA at 5 V DC
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$
Approvals	CE, UL
Weight	approx. 60 g
Further information	www.beckhoff.com/KL2692
Special terminals	KL2692-1001
Distinguishing features	2 digital inputs, 2 potential-free relays, end terminal variant

Digital output | Frequency output (pulse train)

The KL2521-xxxx output terminals provide a parameterisable pulse sequence through both their outputs. The relation between channel A and B is adjustable, e.g. as encoder characteristic. The pulse rate and the frequency are specified by the controller via a 16-bit value. The LEDs are driven in time with the outputs and each displays an active output. The galvanic isolation of the K-bus is realised.

The KL2521 has two RS422-compatible differential outputs, which are fed electrically isolated from the K-bus. For the KL2521-0024 both output channels are implemented as potential-free FET switches and must be fed externally. The 100 mA switch output is short-circuit-proof.

The KL2521 series offers different modes of operation: frequency modulation on the individual channels, incremental encoder or pulse/direction signals. A travel distance control can also be parameterised.

Frequency pulse patterns

1-channel pulse train	1-channel pulse train
output terminal, RS422	output terminal, 24 V DC

Technical data

Output pattern	pulse direction, encoder simulation	
Max. output current	RS422 specification	0.5 A
Number of outputs	1 channel (2 differential outputs A, B)	1 channel (2 single-ended low side switches A, B)
Number of inputs	$2(+\mathrm{T},+\mathrm{Z})$	$2(+\mathrm{T},+\mathrm{Z})$
Nominal voltage	RS422 level	24 V DC (externally supplied)
Current consumption power contacts	- (no power contacts)	- (no power contacts)
Current consumption K-bus	typ. 50 mA , max. 120 mA (load-dependent)	typ. 50 mA, max. 120 mA (load-dependent)
PWM clock frequency	$1 . .500 \mathrm{kHz}$, 50 kHz default	$1 . .500 \mathrm{kHz}$, 50 kHz default
Duty factor	50 \% (± 20 \%)	50 \% (± 20 \%)
Resolution	max. 15 bit	max. 15 bit
Operating temperature	$0 . . .+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex	CE
Weight	approx. 50 g	approx. 50 g
Further information	www.beckhoff.com/KL2521	www.beckhoff.com/KL2521
Special terminals	KL2521-0010	
Distinguishing features	with additional outputs (230 V AC/DC, 100 mA) instead of the additional inputs of the default variant	

Digital output | 24/50 V DC, PWM outputs

	2-channel pulse width output terminal, 24 V DC	2-channel pulse width output terminal, 24 V DC	2-channel pulse width current terminal, 24 V DC	2-channel pulse width current terminal, 50 V DC
Technical data	KL2502 \| KS2502	KL2512 \| KS2512	KL2535 \| KS2535	KL2545 \| KS2545
Load type	ohmic		inductive > 1 mH , valves, coils	
Max. output current	0.1 A (1 A driver component) per channel	1.5 A per channel	2×1 A (short-circuit-proof, thermal overload-proof for both channels together)	2×3.5 A (short-circuit-proof, thermal overload-proof for both channels together)
Number of outputs	2	2	2	2
	The KL2502 digital output terminal modulates the pulse width of a binary signal, and outputs it electrically isolated from the K-bus. The mark/space ratio is prescribed by a 16 -bit value from the automation unit.	The negative switching KL2512 output terminal enables direct connection of different ohmic loads. The output signal is a pulse-width modulated voltage. The typical load of an LED group or an incandescent lamp is connected between the positive side of the supply voltage and the output of the KL2512.	The KL2535 digital output terminal controls an output current via pulse width control of the supply voltage. It is electrically isolated from the K-bus. The current value (0 to 1 A) is specified by the automation device via a 16 -bit value.	The KL2545 digital output terminal controls an output current via pulse width control of the supply voltage. It is electrically isolated from the K -bus. The current value (0 to 3.5 A) is specified by the automation device via a 16-bit value.
Nominal voltage	24 V DC (-15 \%/+20 \%)	24 V DC (-15 \%/+20 \%)	24 V DC (-15 \%/+20 \%)	$8 . .50 \mathrm{~V}$ DC
Current consum. pow. cont.	typ. $10 \mathrm{~mA}+$ load	typ. $10 \mathrm{~mA}+$ load	only load	typ. $30 \mathrm{~mA}+$ load
Current consumpt. K-bus	typ. 18 mA	typ. 18 mA	typ. 60 mA	typ. 100 mA
PWM clock frequency	$1 . . .20 \mathrm{kHz}, 250 \mathrm{~Hz}$ default	$1 . . .20 \mathrm{kHz}, 250 \mathrm{~Hz}$ default	36 kHz	36 kHz
Duty factor	$\begin{aligned} & 0 . . .100 \% \\ & \text { (Ton }>750 \mathrm{~ns} \text {, Toff }>500 \mathrm{~ns} \text {) } \end{aligned}$	0... 100 \%	$\begin{aligned} & 0 . . .100 \% \\ & \text { (current-controlled) } \end{aligned}$	$\begin{aligned} & 0 . . .100 \% \\ & \text { (current-controlled) } \end{aligned}$
Resolution	max. 10 bit	max. 10 bit	max. 12 bit	max. 12 bit
Operating temperature	$0 . . .+55^{\circ} \mathrm{C}$			
Approvals	CE, UL, Ex	CE, Ex	CE	CE
Weight	approx. 50 g	approx. 50 g	approx. 55 g	approx. 100 g
Further information	www.beckhoff.com/KL2502	www.beckhoff.com/KL2512	www.beckhoff.com/KL2535	www.beckhoff.com/KL2545
Special terminals	KL2502-xxxx			
Distinguishing features	special terminals see page			

Digital output | Universal dimmers up to 230 V AC

To dim light efficiently means electronically regulating the current flow through the lighting medium using the phase control principle. The ratio of the switch-on time to the switchoff time determines the output light quantity via the flow of current. Depending on the load connected (ohmic, capacitive, inductive) either the switch-on time (leading edge phase control | load type: L) or the switch-off time (trailing edge phase control | load type: C, R) must be regulated. The load type of an electronic ballast depends on the transformer used and must be taken into account.

The KL2751 and KL2761 universal dimmer terminals automatically recognise the connected load and select the corresponding control principle. The short-circuit resistance prevents damage to the fuse, so that no additional maintenance work is necessary when exchanging the lamp.

If high-energy, high-frequency interference pulses are likely to occur in the 230 V AC mains power supply, they can be eliminated by an upstream KL9380 feed and filter terminal.

Trailing edge phase control

1-channel universal dimmer terminal,
230 V AC

Technical data	KL2751 \| KS2751	KL2761 \| KS2761
Connection technology	4-wire	
Load type	ohmic, inductive or capacitive (not mixed), lamp load, automatic load detection	
Max. output current	1.35 A	2.7 A
Number of outputs	1	
Nominal voltage	230 V AC	
Current consumption power contacts	only load	
Current consumpt. K-bus	typ. 65 mA	
Short circuit current	10... 20 A	20...40 A
Mains voltage	230 V AC (50 Hz)	
Rated output	$300 \mathrm{VA}(\mathrm{W})$	$600 \mathrm{VA}(\mathrm{W})$
Rated current	max. 1.35 A	max. 2.7 A
Control type	phase control	
Resolution	1 \%	
Leakage current	$<1 \mathrm{~mA}$ (OFF state)	
Special features	dimmers with fieldbus functionality	
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$	
Approvals	CE	
Weight	approx. 60 g	
Further information	www.beckhoff.com/KL2751	www.beckhoff.com/KL2761
Special terminals	KL2751-0011	KL2761-0011
Distinguishing features	without power contacts	$600 \text { W, } 50 \mathrm{~Hz}$ (without power contacts)
Accessories		
KL9380	mains filter terminal for dimm www.beckhoff.com/KL9380	

Digital output | 24/50 V DC, stepper motor terminals

Stepper motors are often used in positioning drives. They allow, by the combination of single steps, a positioning process without feedback of the rotor positions. This "open control chain" mode of operation and the longevity of a stepper motor are particularly interesting for price-sensitive fields of application. However, safe positioning is only guaranteed within the performance limits.

In contrast with a DC motor the control of a stepper motor is carried out by the different energisation of the individual motor windings following a defined pattern of pulses. The electromagnetic field of the stator is switched intermittently so that the shaft turns through the step angle a. The motor follows the impulse pattern of the control unit, until the coupled momentum exceeds its holding momentum or the impulse demand is too dynamic, which leads to standstill of the motor. With the KL2531 and KL2541 stepper motor terminals, which are suitable for highly dynamic movement, this problem in areas of higher speeds of rotation can be solved.

The KL2531 and KL2541 stepper motor terminals are designed for direct connection of medium capacity stepper motors. A high frequency clocked PWM output stage regulates the currents through the motor coils. The stepper motor terminals are synchronised with the motor by parameterising. Unipolar as well as bipolar stepper motors can be driven.

Additional inputs support functions like homing and final position monitoring. 64-fold micro stepping ensures particularly quiet and precise motor operation. Together with a stepper motor, the stepper motor terminals represent an inexpensive small servo axis. The KL2541 also includes an incremental encoder interface to read position data.

Both KL2531 and KL2541 stepper motor terminals can be controlled like a servo drive by a speed interface from a Motion Control software such as TwinCAT for example. In applications with a less complex and less powerful CPU the control is also possible via a position interface (travel distance control). The stepper motor terminals move the motor themselves to a desired position. Ramp steepness and maximum speed can be entered as parameters.

Irregular operation at certain speed ranges, particularly without coupled load, indicates that the stepper motor is being runat its resonance frequency. Under certain circumstances the motor may even stop. Resonances in the lower frequency range essentially result from the mechanical motor parameters. Apart from their impact on smooth running, such resonances can lead to significant loss of torque, or even loss of step of the motor, and are therefore particularly undesirable. Due to their sine/ cosine current profile, KL2531 and KL2541 stepper motor terminals are able to prevent
this effect in almost all standard motors. The rotor is not moved from step to step, so it no longer jumps to the next position, but moves through 64 intermediate steps. So the rotor is carefully moved from one step to the next. The usual loss of torque at certain speeds is avoided and operation can be optimised for the particular application. This means that the lower speed range, where particularly high torque is available, can be fully utilised.

The KL2531 stepper motor terminal is designed exclusively for 24 V supply voltage. The motor current can reach up to 1.5 A . The KL2541 covers a supply voltage range from $8 \mathrm{~V} D C$ to $50 \mathrm{~V} D$ and also needs a 24 V supply from the power contacts. The motor current can be set from 1 to 5 A .

The peak current may briefly significantly exceed the rated current and in this way makes the whole drive system very dynamic. In such dynamic applications, negative acceleration causes the feedback of energy, which leads to voltage peaks at the power supply unit. A KL9570 buffer capacitor terminal protects from the effects of overvoltage, in that it absorbs some of the energy. If the voltage exceeds the capacity of the terminal, it gets rid of the excess energy via an external resistance.

AS10xx | Stepper motors see page
869

Connection of a bipolar AS10xx stepper motor, parallel

	Stepper motor terminal 24 V DC, 1.5 A	Stepper motor terminal 50 V DC, 5 A , with incremental encoder
Technical data	KL2531 \| KS2531	KL2541 \| KS2541
Connection technology	direct motor connection	
Load type	uni- or bipolar stepper motors	
Max. output current	1.5 A (overload- and short-circuit-proof)	5 A (overload- and short-circuit-proof)
Number of outputs	1 stepper motor	1 stepper motor, encoder input
Nominal voltage	$24 \mathrm{~V}(-15 \% /+20$ \%)	$8 \ldots 50 \mathrm{~V}$ DC
Current consumption power contacts	only load	typ. 35 mA
Current consumpt. K-bus	typ. 60 mA	typ. 100 mA
Number of inputs	2	2 for limit position, 4 for an encoder system
Maximum step frequency	125,000 steps/s	125,000 steps/s
Step pattern	full step, half step, up to 64-fold micro stepping	full step, half step, up to 64-fold micro stepping
Current controller frequency	approx. 25 kHz	approx. 25 kHz
Resolution	approx. 5,000 positions in typ. applications (per revolution)	approx. 5,000 positions in typ. applications (per revolution)
Encoder signal	-	$5 . .24 \mathrm{~V}, 5 \mathrm{~mA}$, single-ended
Pulse frequency	-	max. 400,000 increments/s (with 4-fold evaluation)
Special features	travel distance control	travel distance control, encoder input
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$
Approvals	CE	CE
Weight	approx. 50 g	approx. 100 g
Further information	www.beckhoff.com/KL2531	www.beckhoff.com/KL2541
Special terminals		KL2541-0006
Distinguishing features		stepper motor terminal 50 V DC, 5 A , 5 V encoder supply

Digital output | 24/50 V DC, DC motor output stages

DC motors can replace the servomotors in many applications if they are operated with an intelligent controller. A DC motor can be integrated very simply into the control system using the KS2532 and KL2552 Bus Terminals. All parameters are adjustable via the fieldbus. The small, compact design and DIN rail mounting make the DC motor output stages suitable for a wide range of applications. The output stages are protected against overload and short circuit and offer an integrated feedback system for incremental encoders on a case-by-case basis.

Through integration into TwinCAT NC, the $D C$ motor can be used in combination with the DC motor output stage - like a servo-axis - for the application without any modifications.

Compared to other motors a DC motor is easier to adjust. The speed of rotation is proportional to the voltage. With the KS2532 Bus Terminal the rotation speed can easily be set through the process data. The integrated
compensation of the internal resistance keeps the motor at the desired speed for load changes. A simple drive task can be performed by a simple controller.

For demanding positioning tasks a closed speed control loop with a feedback system is needed. The KL2552 allows connection of an incremental encoder. The control loop can be closed by the higher-level controller.

The peak current may briefly significantly exceed the rated current and in this way makes the whole drive system very dynamic. In such dynamic applications, negative acceleration causes the feedback of energy, which leads to voltage peaks at the power supply unit. A KL9570 buffer capacitor terminal protects from the effects of overvoltage, in that it absorbs some of the energy. If the voltage exceeds a threshold, the terminal dissipates the excess energy via an external resistance.

The KL2284 output terminal is sufficient for applications with start/stop or right/left running functions without controllers.

Realising demanding positioning tasks by closed speed control loop

It switches loads in selectable polarity. This means that DC motors can be used in both directions of rotation. A polarity is switched with two output bits per channel. An interlock prevents simultaneous switching of both directions. Advanced power semiconductors enable safe and wear-free switching with minimum dimensions. The high starting and short-circuit currents of the KL2284 are comparable with a robust relay. The number of switching cycles is almost unlimited.

KL9570 | Buffer capacitor terminal see page $\quad 684$

	2-channel DC motor output stage, 24 V DC, 1 A	2-channel DC motor output stage, 50 V DC, 5 A	4-channel digital output terminal, 24 V DC, 2-wire
Technical data	KL2532 \| KS2532	KL2552 \| KS2552	KL2284 \| KS2284
Connection technology	direct motor connection		2-wire
Load type	DC brush motors, inductive		AC/DC loads
Max. output current	2×1 A (short-circuit-proof, thermal over-load-proof for both channels together)	2×5 A (short-circuit-proof, thermal over-load-proof for both channels together)	2 A
Number of outputs	2 DC motors	2 DC motors, encoder input	$4 \times \mathrm{H}$-bridge circuit
Nominal voltage	24 V DC (-15 \%/+20 \%)	$8 \ldots 50 \mathrm{~V}$ DC	$0 . . .24 \mathrm{~V} \mathrm{AC/DC}$
Current consumption power contacts	typ. $30 \mathrm{~mA}+$ load	typ. 50 mA	only load
Current consumpt. K-bus	typ. 50 mA	typ. 100 mA	100 mA
Current limitation/ short circuit current	controlled, adjustable	controlled, adjustable	90 A
Peak current	-	-	$5 \mathrm{~A}(100 \mathrm{~ms}),<50 \mathrm{~A}(10 \mathrm{~ms})$
On-resistance	-	-	typ. 0.03Ω
PWM clock frequency	30 kHz with 180° phase shift each	30 kHz with 180° phase shift each	-
Duty factor	$0 . .100 \%$ (voltage-controlled)	$0 . .100 \%$ (voltage-controlled)	-
Resolution	max. 10 bits current, 16 bits speed	max. 10 bits current, 16 bits speed	-
Encoder signal	-	$5 . . .24 \mathrm{~V}, 5 \mathrm{~mA}$, single-ended	-
Pulse frequency	-	max. 400,000 increments/s (with 4-fold evaluation)	-
Switching on speed	-	-	typ. 235 ms , max. 300 ms
Switching off speed	-	-	typ. 30 ms , max. 50 ms
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$
Approvals	CE	CE	CE
Weight	approx. 55 g	approx. 100 g	approx. 70 g
Further information	www.beckhoff.com/KL2532	www.beckhoff.com/KL2552	www.beckhoff.com/KL2284

Digital output | 230 V AC, AC motor speed controller

When driving working machines whose production or conveying performance can be influenced via the drive speed of the motor, energy can be saved by means of variable speed. This particularly applies if the change in the motor speed is also linked with large changes in the emitted mechanical output. Increase the speed - higher load, decrease - lower load. This procedure is particularly suitable for uncontrolled units with a square load characteristic, because regulating the speed just a little brings about a large change in energy consumption due to its square influence.

Using the KL2791 single-phase AC motor terminal, a single-phase AC motor with a maximum power consumption of 0.2 KW can be operated with speed control depending on the process data. L1 and N of the motor are wired directly to the terminal; this is in turn integrated in the control environment via a Bus Coupler or connected directly to an embedded device. The controller specifies the set value for the motor speed in the form of a 16-bit word; the speed is regulated internally in the terminal. The motor is switched on and off with a practice-proven mains-synchronous pattern, so that the motor consumes less power and the speed falls significantly. This method is well suited to motors with fixed loads, such as pumps and fans, in order to achieve a control range for the flow rate from 10 to 100%.

1-channel AC motor
speed controller,
230 V AC, 200 VA

Technical data	KL2791 \| KS2791
Connection technology	direct motor connection
Load type	1-phase AC motors
Max. output current	0.9 A
Number of outputs	1 motor

Nominal voltage	230 V AC	
Current consumption power contacts	only load	
Current consumpt. K-bus	typ. 65 mA	
Reverse voltage protection	no	
Rated output	$\leq 200 \mathrm{VA}$	
Control type	phase/full wave control	
Resolution	1 \%	
Leakage current	< 1 mA (OFF state)	
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$	
Approvals	CE	
Weight	approx. 60 g	
Further information	www.beckhoff.com/KL2791	
Special terminals	KL2791-0011	KL2791-1200
Distinguishing features	$\begin{aligned} & 230 \mathrm{~V} \mathrm{AC}, 200 \mathrm{VA}, \\ & \text { max. } 0.9 \mathrm{~A} \text {, } \\ & \text { without power contacts } \end{aligned}$	120 V AC, 100 VA

Digital output | TwinSAFE

The KL2904 safety Bus Terminal is a digital output terminal. It switches 24 V DC actuators with up to 0.5 A current per channel. The KL2904 meets the requirements of DIN EN ISO 13849-1:2008 (Cat 4, PL e) and IEC 61508:2010 (SIL 3). If the Bus Terminal detects a fault, it switches off automatically (fail stop).

For further information on TwinSAFE and the TwinSAFE products see page 966

4-channel digital
output terminal,
TwinSAFE, 24 V DC

The KL2904 Safety Bus Terminal has four outputs.

Protocol	TwinSAFE/Safety over EtherCAT
Nominal voltage	24 V DC $(-15 \% /+20 \%)$
Current consumption power contacts	load-dependent
Current consumpt. K-bus	250 mA
Fault response time	\leq watchdog time (parameterisable)
Permitted degree of contamination	2
Climate class EN 60721-3-3	$3 \mathrm{K3}$
Installation position	horizontal
Special features	4 safe outputs
Operating/storage temperature	$0 \ldots+55^{\circ} \mathrm{Cl}-25 . . .+70^{\circ} \mathrm{C}$
EMC immunity/emission	Conforms to EN 61000-6-2/EN 61000-6-4
Vibration/shock resistance	conforms to EN 60068-2-6/EN 60068-2-27
Approvals	CE, UL, Ex, TÜV SÜD
Weight	approx. 100 g
Further information	www.beckhoff.com/KL2904

Analog input |-10...+10 V

The KL3xxx Bus Terminals read analog signal voltages in the common standard signal range of -10 to $+10 \mathrm{~V}, 0$ to $10 \mathrm{~V}, 0$ to 20 mA and 4 to 20 mA . Inside the terminal the field side of the K-bus is electrically isolated and enables the interconnection to desired potential groups. The 1-channel terminals are available for applications in which each signal must be completely isolated. An additional electrically isolated 24 V DC supply can be created by the application of the KL9560 power supply terminal (24 V DC/24 V DC).

The analog input Bus Terminals differ in their different resolutions of the analog/ digital conversion, conversion speed and accuracy. For 1 - and 2 -channel terminals 1 -, $2-, 3$ - and 4 -wire connections are available for the sensors. 4-channel Bus Terminals can only be used with 1 - and 2 -wire connections. The KL3454 is optimised for the use of 2-wire sensors with 24 V DC supply. The signal current is measured between ground and the input. The second connection point for the sensor is the 24 V supply from the terminal's power contact.

The input circuit of the terminals differs between single-ended and differential inputs. A single-ended input expects a signal with a fixed reference to ground. In practice, singleended is easily to be wired using single-wire connection. The differential input only measures the difference between both inputs $+I$ and -I. An overlap within the commonmode area (common-mode voltage) has no effect on the result. For measurement two conductors should always be connected; in the case of single-wire connection input -I can be connected to ground.

The product range is rounded off by further special input voltages and covers a wide field of applications for the processing of analog signals. By the expansion of power supply terminals well-stabilised auxiliary voltages from 5 to 15 V can be generated.

	1-channel analog input terminal, $-10 \ldots+10 \mathrm{~V}, 12$ bit, differential input	2-channel analog input terminal, $-10 \ldots+10 \mathrm{~V}, 12$ bit, differential input
Technical data	KL3001 \| KS3001	KL3002 \| KS3002
Signal voltage	$-10 \ldots+10 \mathrm{~V}$	
Resolution	12 bit (for $0 \ldots . .10 \mathrm{~V}$ range: res	olution 11 bit)
Technology	differential input	differential input
Conversion time	$\sim 1 \mathrm{~ms}$	$\sim 2 \mathrm{~ms}$
Number of inputs	1	2
	The KL3001 analog input terminal is characterised by its electrical isolation.	The KL3002 analog input terminal combines two differential inputs with a common internal ground potential in one housing.
Measuring error	$< \pm 0.3$ \% (relative to full scale value)	$< \pm 0.3 \%$ (relative to full scale value)
Current consumption power contacts	- (no power contacts)	- (no power contacts)
Current consumpt. K-bus	typ. 65 mA	typ. 65 mA
Internal resistance	$>200 \mathrm{k}$ ת	$>200 \mathrm{k}$ ת
Common-mode voltage Ucm	35 V max.	35 V max.
Special features	-	-
Operating temperature	$0 . .+55^{\circ} \mathrm{C}$	$-25 . . .+60^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex	CE, UL, Ex
Weight	approx. 70 g	approx. 70 g
Further information	www.beckhoff.com/KL3001	www.beckhoff.com/KL3002
Special terminals		KL3002-00xx
Distinguishing features		special terminals see 685

4-channel analog input terminal, $-10 \ldots+10 \mathrm{~V}, 12$ bit, single-ended	8-channel analog input terminal, $-10 \ldots+10 \mathrm{~V}, 12$ bit, single-ended	2-channel analog input terminal, $-10 \ldots+10 \mathrm{~V}, 16$ bit, differential input	2-channel analog input terminal, $-10 \ldots+10 \mathrm{~V}, 16 \mathrm{bit}$, differential input
KL3404 \| KS3404	KL3408 \| KS3408	KL3102 \| KS3102	KL3132 \| KS3132

			16 bit (for $0 \ldots 10 \mathrm{~V}$ range: resolution 15 bit)	
	single-ended	single-ended	differential input	differential input
	$\sim 2 \mathrm{~ms}$	$\sim 4 \mathrm{~ms}$	$\sim 140 \mathrm{~ms}$, configurable to 2 ms	~ 140 ms , configurable
	4	8	2	2
	The KL3404 analog input terminal has four inputs, which are implemented in 2-wire technique. The common reference ground of the inputs is the internal ground.	The KL3408 analog input terminal combines eight inputs in one housing. The use of single conductor connection technology enables the connection of multi-channel sensor technology with minimum space requirements. The reference ground for all inputs is the 0 V power contact.	The KL3102 analog input terminal combines two differential inputs with a common internal ground potential in one housing.	The KL3132 analog input terminal is optimised for highly accurate control processes due to its low measuring error of $\pm 0.05 \%$ (in relation to the full scale value). The differential inputs have a common, internal ground potential.
	$< \pm 0.3 \%$ (relative to full scale value)	$< \pm 0.3 \%$ (relative to full scale value)	$< \pm 0.3 \% \text { (relative }$ to full scale value)	$< \pm 0.05$ \% (relative to full scale value)
	-	-	- (no power contacts)	-
	typ. 100 mA	typ. 140 mA	typ. 65 mA	typ. 85 mA
	$>130 \mathrm{k} \Omega$	$>130 \mathrm{k} \Omega$	$>200 \mathrm{k} \Omega$	$>200 \mathrm{k} \Omega$
	-	-	35 V max.	35 V max.
	-	high packing density	-	increased measuring accuracy
	$-25 \ldots+60^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$
	CE, UL, Ex, GL	CE, UL, Ex, GL	CE, UL, Ex	CE, UL, Ex
	approx. 75 g	approx. 75 g	approx. 70 g	approx. 70 g
	www.beckhoff.com/KL3404	www.beckhoff.com/KL3408	www.beckhoff.com/KL3102	www.beckhoff.com/KL3132
			KL3102-0050	
			Siemens S7 format	

Analog input $\mid 0 . .10 \mathrm{~V}, 0 \ldots 2 \mathrm{~V}, 0 \ldots 500 \mathrm{mV}, \pm 2 \mathrm{~V}$

	1-channel analog input terminal, $0 . . .10 \mathrm{~V}, 12$ bit, single-ended	2-channel analog input terminal, $0 . .10 \mathrm{~V}, 12$ bit, single-ended	4-channel analog input terminal, $0 \ldots 10 \mathrm{~V}, 12$ bit, single-ended	4-channel analog input terminal, $0 \ldots 10 \mathrm{~V}, 12$ bit, single-ended
Technical data	KL3061 \| KS3061	KL3062 \| KS3062	KL3064 \| KS3064	KL3464 \| KS3464
Signal voltage	0...10 V			
Resolution	12 bit			
Technology	single-ended	single-ended	single-ended	single-ended
Conversion time	$\sim 1 \mathrm{~ms}$	$\sim 2 \mathrm{~ms}$	$\sim 4 \mathrm{~ms}$	$\sim 2 \mathrm{~ms}$
Number of inputs	1	2	4	4
	The KL3061 analog input terminal is characterised by its fine granularity and electrical isolation.	The KL3062 analog input terminal combines two single-ended inputs with a common internal ground potential in one housing.	The KL3064 analog input terminal contains four single-ended inputs with a common internal ground potential.	The KL3464 analog input terminal combines four single-ended inputs with a common internal ground potential in one housing.
Measuring error	$< \pm 0.3 \%$ (relative to full scale value)	$< \pm 0.3 \%$ (relative to full scale value)	$< \pm 0.3 \%$ (relative to full scale value)	$< \pm 0.3 \%$ (relative to full scale value)
Current consumption power contacts	- (no power contacts)	- (no power contacts)	- (no power contacts)	-
Current consumpt. K-bus	typ. 60 mA	typ. 60 mA	typ. 85 mA	typ. 100 mA
Internal resistance	$>130 \mathrm{k} \Omega$	$>130 \mathrm{k} \Omega$	$>130 \mathrm{k} \Omega$	$>130 \mathrm{k} \Omega$
Common-mode voltage Ucm	-	-	-	-
Special features	-	-	-	-
Operating temperature	$0 . .+55^{\circ} \mathrm{C}$	$0 . . .+55^{\circ} \mathrm{C}$	$-25 . . .60^{\circ} \mathrm{C}$	$-25 . . .+60^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex	CE, UL, Ex	CE, UL, Ex, GL	CE, UL, Ex, GL
Weight	approx. 60 g	approx. 60 g	approx. 80 g	approx. 75 g
Further information	www.beckhoff.com/KL3061	www.beckhoff.com/KL3062	www.beckhoff.com/KL3064	www.beckhoff.com/KL3464
Special terminals		KL3062-00xx	KL3064-00xx	
Distinguishing features		special terminals see 685	special terminals see $\quad 685$	

Analog input | 0... 20 mA

	1-channel analog input terminal, $0 . . .20 \mathrm{~mA}, 12$ bit, differential input	2-channel analog input terminal, $0 . . .20 \mathrm{~mA}, 12$ bit, differential input	4-channel analog input terminal, $0 . . .20 \mathrm{~mA}, 12$ bit, single-ended	4-channel analog input terminal, $0 . . .20 \mathrm{~mA}, 12$ bit, single-ended
Technical data	KL3011 \| KS3011	KL3012 \| KS3012	KL3044 \| KS3044	KL3444 \| KS3444
Signal current	0... 20 mA			
Resolution	12 bit			
Technology	differential input	differential input	single-ended	single-ended
Conversion time	$\sim 1 \mathrm{~ms}$	$\sim 2 \mathrm{~ms}$	$\sim 4 \mathrm{~ms}$	$\sim 2 \mathrm{~ms}$
Number of inputs	1	2	4	4
	The KL3011 analog input terminal is characterised by its electrical isolation. The input channels of the Bus Terminal have differential inputs and possess a common, internal ground potential.	The KL3012 analog input terminal combines two differential inputs with a common internal ground potential in one housing.	The KL3044 analog input terminal has four inputs, which are implemented in 2-wire technique. The common reference ground of the inputs is the internal ground.	The KL3444 analog input terminal has four inputs, which are implemented in 2-wire technique. The common reference ground of the inputs is the internal ground.
Measuring error	$< \pm 0.3 \%$ (relative to full scale value)	$< \pm 0.3 \%$ (relative to full scale value)	$< \pm 0.3$ \% (relative to full scale value)	$< \pm 0.3$ \% (relative to full scale value)
Current consum. pow. cont.	- (no power contacts)	- (no power contacts)	- (no power contacts)	-
Current consumpt. K-bus	typ. 60 mA	typ. 60 mA	typ. 65 mA	typ. 85 mA
Internal resistance	$80 \Omega+0.7 \mathrm{~V}$	$80 \Omega+0.7 \mathrm{~V}$	$80 \Omega+0.7 \mathrm{~V}$	$<85 \Omega$
Common-mode voltage $\mathrm{U}_{\text {cm }}$	35 V max.	35 V max.	-	-
Surge voltage resistance	35 V DC	35 V DC	35 V max.	30 V DC
Special features	-	-	-	-
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex, GL			
Weight	approx. 70 g	approx. 70 g	approx. 70 g	approx. 75 g
Further information	www.beckhoff.com/KL3011	www.beckhoff.com/KL3012	www.beckhoff.com/KL3044	www.beckhoff.com/KL3444
Special terminals		KL3012-00xx		
Distinguishing features		special terminals see 685		

8-channel analog input terminal,	1-channel analog input terminal,	2-channel analog input terminal,	2-channel analog input terminal, $0 \ldots 20 \mathrm{~mA}, 12$ bit, single-ended	with sensor supply with sensor supply

Analog input | 4... 20 mA

	1-channel analog input terminal, 4... $20 \mathrm{~mA}, 12$ bit, differential input	2-channel analog input terminal, 4... $20 \mathrm{~mA}, 12$ bit, differential input	4-channel analog input terminal, 4... $20 \mathrm{~mA}, 12$ bit, single-ended	4-channel analog input terminal, 4... $20 \mathrm{~mA}, 12$ bit, single-ended
Technical data	KL3021 \| KS3021	KL3022 \| KS3022	KL3054 \| KS3054	KL3454 \| KS3454
Signal current	$4 . . .20 \mathrm{~mA}$			
Resolution	12 bit			
Technology	differential input	differential input	single-ended	single-ended
Conversion time	$\sim 1 \mathrm{~ms}$	$\sim 2 \mathrm{~ms}$	$\sim 4 \mathrm{~ms}$	$\sim 2 \mathrm{~ms}$
Number of inputs	1	2	4	4
	The KL3021 analog input terminal is characterised by its fine granularity and electrical isolation. The input channels of the Bus Terminal have differential inputs and possess a common, internal ground potential.	The KL3022 analog input terminal combines two differential inputs with a common internal ground potential in one housing.	The KL3054 analog input terminal has four inputs, which are implemented in 2-wire technique. The common reference ground of the inputs is the internal ground.	In the KL3454 Bus Terminal, the four inputs are 2-wire versions and have a common ground potential. The 24 V power contact is connected to the terminal in order to enable the connection of 2-wire sensors.
Measuring error	$< \pm 0.3$ \% (relative to full scale value)	$< \pm 0.3$ \% (relative to full scale value)	$< \pm 0.3$ \% (relative to full scale value)	$< \pm 0.3$ \% (relative to full scale value)
Current consum. pow. cont.	- (no power contacts)	- (no power contacts)	- (no power contacts)	only load
Current consumpt. K-bus	typ. 60 mA	typ. 60 mA	typ. 75 mA	typ. 85 mA
Internal resistance	$80 \Omega+0.7 \mathrm{~V}$	$80 \Omega+0.7 \mathrm{~V}$	$80 \Omega+0.7 \mathrm{~V}$	$<85 \Omega$
Common-mode voltage Uсм	35 V max.	35 V max.	-	-
Surge voltage resistance	35 V DC	35 V DC	35 V max.	30 V DC
Special features	-	-	for 2-wire sensors	-
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex, GL			
Weight	approx. 70 g	approx. 70 g	approx. 70 g	approx. 75 g
Further information	www.beckhoff.com/KL3021	www.beckhoff.com/KL3022	www.beckhoff.com/KL3054	www.beckhoff.com/KL3454
Special terminals		KL3022-00xx	KL3054-0050	
Distinguishing features		special terminals see 685	Siemens S7 format	

8-channel analog input terminal, 4... $20 \mathrm{~mA}, 12$ bit, single-ended	1-channel analog input terminal, 4... $20 \mathrm{~mA}, 12$ bit, with sensor supply	2-channel analog input terminal, 4... $20 \mathrm{~mA}, 12$ bit, with sensor supply	2-channel analog input terminal, 4... $20 \mathrm{~mA}, 15 / 16$ bit, differential input	2-channel analog input terminal, 4... $20 \mathrm{~mA}, 16$ bit, differential input
KL3458 \| KS3458	KL3051 \| KS3051	KL3052 \| KS3052	KL3122 \| KS3122	KL3152 \| KS3152

Analog input | Resistance thermometers (RTD, PT100, PT1000)

The KL32xx Bus Terminals are intended for direct connection of resistance thermometers. The resistance is measured with a small measurement current and the temperature value is calculated by a linearisation corresponding to the sensor type which has been implemented.

In practice, platinum and nickel sensors with different resistance values are used. The resistance value of the sensor is always defined at $0^{\circ} \mathrm{C}$:

- PT100 $=100 \Omega$ at $0^{\circ} \mathrm{C}$
- PT1000 $=1000 \Omega$ at $0^{\circ} \mathrm{C}$
- Ni100 $=100 \Omega$ at $0^{\circ} \mathrm{C}$
- ...

The Bus Terminals support 2-, 3- or 4 -wire measurement. The measurement and the sensor can be used in any combination, depending on the type of application. For 2-wire measurement 1000Ω sensors are recommended to reduce the influence of the conductor resistance.

The KL32xx series indicates sensor faults, e.g. a broken wire, via error LEDs. In addition, the KL3208-0010 offers a cable resistance calibration and is particularly suitable for building automation.

	4-channel analog input terminal, PT100 (RTD)	4-channel analog input terminal, PT100 (RTD), 16 bit
Technical data	KL3204 \| KS3204	KL3214
Sensor types	PT100, PT200, PT500, PT1000, Ni100, Ni120, Ni1000 resistance measurement (e.g. potentiometer, $10 \Omega \ldots 1.2 / 5 \mathrm{k} \Omega$)	PT100/200/500/1000, Ni100/120/1000, potentiometer: 10Ω... $1.2 / 4 \mathrm{k} \Omega$, KTY sensors (types see documentation)
Resolution	$0.1{ }^{\circ} \mathrm{C}$ per digit	
Technology	2-wire	3-wire
Conversion time	$\sim 250 \mathrm{~ms}$	approx. 170 ms default setting
Number of inputs	4	4
	Standard setting: resolution $0.1^{\circ} \mathrm{C}$ in the temperature range of PT100 sensors	Standard setting: resolution $0.1^{\circ} \mathrm{C}$
Measuring error	$< \pm 1^{\circ} \mathrm{C}$	$< \pm 0.5{ }^{\circ} \mathrm{C}$ for PT sensors
Measuring range	$\begin{aligned} & -200 \ldots+850^{\circ} \mathrm{C} \text { (PT sensors); } \\ & -60 \ldots+250^{\circ} \mathrm{C} \text { (Ni sensors) } \end{aligned}$	$-200 . . .+850^{\circ} \mathrm{C}$ (PT sensors); $-60 \ldots+250^{\circ} \mathrm{C}$ (Ni sensors)
Current consum. pow. cont.	- (no power contacts)	-
Current consumpt. K-bus	typ. 60 mA	typ. 120 mA
Measuring current	typ. 0.5 mA	$<0.5 \mathrm{~mA}$ (load-dependent)
Operating temperature	$-25 \ldots+60^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex, GL	CE
Weight	approx. 70 g	approx. 60 g
Further information	www.beckhoff.com/KL3204	www.beckhoff.com/KL3214
Special terminals	KL3204-0030	
Distinguishing features	NTC (10 k)	

Analog input | Thermocouples

Thermocouples can be classified as active transducers. They exploit the thermo-electric effect (Seebeck, Peltier, Thomson). Where two electrical conductors of different materials (e.g. iron and constantan) make contact, a contact voltage occurs at the contact points, which is clearly a function of temperature and so is called thermovoltage. Due to changes in the material during the implementation of a thermocouple, at least two of such material pairings occur. One is placed at the measurement location, the other is the so-called comparison point, which is normally located in the measurement device. In order to compensate for the reference point effect, the temperature at the reference point must be known. For the KL331x this is the connection point of the thermocouple to the terminal contacts, which is why the terminal contact temperature is specially measured here.

Thermocouples represent economical and easy to install sensors for temperature measurement with reduced need for accuracy. Depending on the type of thermocouple, temperatures from -200 to $+2,300^{\circ} \mathrm{C}$ can be measured. The linearisation and cold junction compensation is carried out by a characteristic curve on a microprocessor. The directions in the documentation, concerning earthing and thermocouples which are not potentialfree, must be observed. An error LED indicates a broken wire.

1-channel analog input terminal, thermocouple with open-circuit recognition

Technical data	KL3311	
Thermocouple sensor types	types J, K, L, B, E, N, R, S, T, U (default setting type K), mV measurement	
Resolution	$0.1{ }^{\circ} \mathrm{C}$ per digit	
Technology	2-wire	
Conversion time	$\sim 200 \mathrm{~ms}$	
Number of inputs	1	

The analog input terminal KL3311 enables direct connection of a thermocouple. The circuit of the Bus Terminal can operate thermocouples using 2 -wire technique. Linearisation over the full temperature range is realised with the aid of a microprocessor. Compensation for the cold junction is made through an internal temperature measurement at the terminal. The KL3311 can also be used for mV measurement.

Measuring error	$< \pm 0.5 \%$ (relative to full scale value)
Measuring range	in the range defined in each case for the sensor (default setting: type $\mathrm{K} ;-100 \ldots+1,370^{\circ} \mathrm{C}$); mV measurement: $\pm 30 \mathrm{mV} \ldots \pm 120 \mathrm{mV}$
Current consumption power contacts	- (no power contacts)
Current consumpt. K-bus	typ. 65 mA
Special features	electrically isolated
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$
Approvals	$\mathrm{CE}, \mathrm{UL}, \mathrm{Ex}$
Weight	approx. 70 g
Further information	www.beckhoff.com/KL3311
Special terminals	
Distinguishing features	

Analog input | Resistor bridges

1-channel analog input terminal, resistor bridge (strain gauge)

Technical data	KL3351 \| KS3351	KL3356 \| KS3356
Signal voltage	$\begin{aligned} & \text { UD: }^{-16 \ldots+16 \mathrm{mV}} \\ & \text { UREF: }^{2}-10 \ldots+10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { U }: ~: ~_{-20 \ldots+20 \mathrm{mV}} \\ & \text { UReF: }-12 \ldots+12 \mathrm{~V} \end{aligned}$
Resolution	16 bit	
Technology	DMS connection	DMS connection
Conversion time	$<250 \mathrm{~ms}$, configurable	$<250 \mathrm{~ms}$, configurable
Number of inputs	2, for one resistor bridge	2, for one resistor bridge
	The KL3351 analog input terminal permits direct connection of a resistor bridge. The bridge voltage, U_{D}, and the supply voltage, UREF, to the bridge are digitised with 16 bit resolution, and are transmitted along an electrically isolated channel to the supervising automation system. The input channels are available in the form of two 16 bit values for further processing. The resulting measurement can be calculated from the formula: measurement $=U_{D} / U_{\text {ref. }}$. Precise acquisition of the supply voltage along with the bridge voltage compensates for long-term and temperature drift.	The KL3356 analog input terminal permits direct connection of a resistor bridge. Its improved input circuit makes the KL3356 significantly more accurate than the KL3351. The ratio between the bridge voltage U_{D} and the supply voltage U Uef is determined in the input circuit. In order to achieve good long-term stability, the complete circuit is re-calibrated at least every three minutes. This procedure can be synchronised by the control in order to prevent the calibration leading to a delay in the production process.
Measuring error	$< \pm 0.1$ \% (relative to full scale value)	$< \pm 0.01$ \% (relative to full scale value)
Current consumption power contacts	- (no power contacts)	only load
Current consumpt. K-bus	typ. 65 mA	typ. 85 mA
Internal resistance	$>200 \mathrm{k} \Omega$ ($\mathrm{U}_{\text {ref }}$), $>1 \mathrm{M} \Omega$ (U_{D})	$>200 \mathrm{k} \Omega$ ($\mathrm{U}_{\text {ReF }}$), $>1 \mathrm{M} \Omega$ (U_{D})
Power supply U_{v}	5 V DC, max. 20 mA	via power contacts
Filter	50 Hz , configurable	50 Hz , configurable
Special features	with internal bridge supply	increased measuring accuracy, self-calibration
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex	CE, UL, Ex
Weight	approx. 70 g	approx. 75 g
Further information	www.beckhoff.com/KL3351	www.beckhoff.com/KL3356
Special terminals	KL3351-0001	
Distinguishing features	with faster measurement time approx. 10 ms	

Analog input | Oscilloscopes

	1-channel analog input terminal, oscilloscope, $-16 \ldots+16 \mathrm{mV}$	2-channel analog input terminal, oscilloscope, $-10 \ldots+10 \mathrm{mV}$
Technical data	KL3361 \| KS3361	KL3362 \| KS3362
Signal voltage	UIN: $-16 \ldots+16 \mathrm{mV}$	$-10 \ldots+10 \mathrm{~V}$
Resolution	14 bit + sign	
Technology	high-speed data logger	high-speed data logger
Conversion time	$<100 \mu \mathrm{~s}$, configurable (10 $\mu \mathrm{s}$ with fast sampling mode)	$<100 \mu \mathrm{~s}$, configurable ($10 \mu \mathrm{~s}$ with fast sampling mode)
Number of inputs	1 analog, 1 trigger	2 analog, 1 trigger

The KL3361 and KL3362 analog input terminals make it possible to perform non-central preliminary processing of analog values. The input values are digitised with a 14-bit resolution and written into an internal memory. An efficient processor can pre-process the values. Limit values, maximum and minimum values will be determined or monitored. The Bus Terminals can also carry out envelope curve monitoring. A trigger starts cyclical processes. The result or all the measured values are transported to the higher-level automation unit.

Measuring error	$< \pm 1 \%$ (relative to full scale value)	$< \pm 0.5 \%$ (relative to full scale value)
Current consumption power contacts	- (no power contacts)	- (no power contacts)
Current consumption K-bus	typ. 120 mA with external DMS power supply, typ. 140 mA with internal DMS power supply from terminal $(4 \times 350 \Omega)$	typ. 120 mA
Internal resistance	$>1 \mathrm{M} \Omega\left(\mathrm{U}_{\mathrm{B}}\right)$	$>500 \mathrm{k} \Omega$
Supply voltage	$5 \mathrm{~V} \mathrm{DC}, \mathrm{max} 20 mA$.	-
Power supply	via the K-bus	via the K-bus
Internal memory	32 kbytes	32 kbytes
Special features	high-speed strain gauge analysis (for all fieldbuses)	high-speed analog analysis
Operating temperature	$0 . . .+55^{\circ} \mathrm{C}$	$0 . . .+55^{\circ} \mathrm{C}$
Approvals	$\mathrm{CE}, \mathrm{UL}, \mathrm{Ex}$	$\mathrm{CE}, \mathrm{UL}, \mathrm{Ex}$
Weight	approx. 55 g	approx. 55 g
Further information	www.beckhoff.com/KL3361	www.beckhoff.com/KL3362

Analog input | Power measurement

The KL3403 Bus Terminal enables the measurement of all relevant electrical data of the supply network. The voltage is measured via the direct connection of $\mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L} 3$ and N . The current of the three phases L1, L2 and L3 is fed via simple current transformers. All measured currents and voltages are available as root-mean-square values. In the KL3403 version, the effective power and the energy consumption for each phase are calculated. Through the relationship of the root-mean-square values of voltage and current all other information, such as effective power P, apparent power S or phase shift angle $\cos \varphi$ can be derived. For each fieldbus, KL3403 provides a comprehensive network analysis and an energy management option.

Technical data	KL3403 \| KS3403	KL3403-0010
Measuring voltage	max. 500 V AC 3~ (ULx-N: max. 288 V AC)	
Resolution	16 bit (21 bit, internal)	
Technology	3 -phase connection technique	
Update time	50 ms per measured value preset, free configurable	
Number of inputs	3 phases + N	
		$5^{+60^{\circ} \mathrm{C}}{ }^{-25^{\circ} \mathrm{C}}$
Measuring error	0.5 \% relative to full scale value (U, I), 1 \% calculated value	
Current consumption power contacts	- (no power contacts)	
Current consumpt. K-bus	typ. 115 mA	
Measuring procedure	true RMS with 64,000 samples/s	
Measured values	current, voltage, effective power, energy, $\cos \varphi$, peak values U, I and P, frequency	
Measuring current	max. 1 A , via measuring transformers x $\mathrm{A} / 1 \mathrm{~A}$	max. 5 A (AC/DC), via measuring transformers $\times \mathrm{A} / 5 \mathrm{~A}$
Electrical isolation	1,500 V (K-bus/field potential)	
Special features	energy meter, power measurement, True RMS	
Operating temperature	$-25 \ldots+60^{\circ} \mathrm{C}$	
Approvals	CE, UL	
Weight	approx. 75 g	
Further information	www.beckhoff.com/KL3403	
Special terminals	KL3403-0020	KL3403-0022
Distinguishing features	current path designed for 20 mA , optimised for electronic current transformer, operating temperature $0 . .+55^{\circ} \mathrm{C}$	current path and voltage input designed for 20 mA , operating temperature $0 \ldots+55^{\circ} \mathrm{C}$

Analog input | Digital multimeter

The KL3681 Bus Terminal enables measurement of currents and voltages in a wide input range. The measuring ranges are switched automatically, as usual in advanced digital multimeters. There are two current paths available for current measurement. One of them is a high current path for up to 10 A . The current and the voltage measurement facility can be used for DC and AC. The alternating parameters are output as true RMS values. The measurement readings can be read and processed with commercially available fieldbuses. At the same time the KL3681 enables the measuring type and range to be set via the bus.

Excellent interference immunity is achieved through the fully electrically isolated design of the electronic measuring system and the dual slope conversion system. High precision and simple, high impedance measurement from 300 mV to 300 V allow the Bus Terminal to be used like a modern digital multimeter.

In measuring applications in particular, the voltage to be expected is often not yet known during the planning phase. Automatic adjustment of the measurement range simplifies use and reduces stock levels. The selected measuring type and overload are indicated by LEDs.

	Digital multimeter terminal
Technical data	KL3681 \| KS3681
Measuring voltage	$300 \mathrm{mV}, 3 \mathrm{~V}, 30 \mathrm{~V}, 300 \mathrm{~V}$
Resolution	18 bit + sign in each measurement range
Technology	digital multimeter with automatic range selection
Update time	$0.5 \mathrm{~s}, 1 \mathrm{~s}$ for measuring range selection
Number of inputs	1 voltage or 1 current ($10 \mathrm{~A} / 1 \mathrm{~A}$)
Measuring error	0.01 \% DC voltage measurement at $25^{\circ} \mathrm{C}$
Current consumption power contacts	- (no power contacts)
Current consumpt. K-bus	typ. 100 mA
Measuring procedure	DC with arithmetic averaging, AC with true RMS value calculation
Measured values	current, voltage
Measuring current	$100 \mathrm{~mA}, 1 \mathrm{~A}$ and 10 A via high-current path
Electrical isolation	1,500 V (K-bus/field potential)
Special features	automatic or manual range selection, 1.25 A fuse installed + spare fuse, filter deactivatable
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$
Approvals	CE
Weight	approx. 70 g
Further information	www.beckhoff.com/KL3681
Accessories	ZB8000-0001
Spare fuse	10 pieces, 1.25 A

Analog input | Pressure measuring

The pressure measuring terminals are divided into two groups: differential pressure measurement with the measurement between two connections and relative pressure measurement with duplicate measurement against ambient.

The Bus Terminal can be used for measurement of the pressure or also as a replacement for a pressure switch. Through the pressure value in the control unit the switching threshold for a logical linking can be stored as a parameter. Manual setting of the pressure switch in the practice is no longer necessary.

The measuring hoses can simply be connected by plugging them into a quick coupling. Normal 4 mm compressed air hoses are used.

With the direct integration of the pressure measurement into the Bus Terminal system the installation of a pressure measurement unit including its wiring can be omitted.

The pressure measurement terminals are suitable for the measurement of non-aggressive gases. Water or gases which encourage oxidation should not be allowed to get into the Bus Terminal.

Technical data	KM3701	KM3701-0340
Technology	differential pressure measurement	
Resolution	0.1 hPa (0.1 mbar) per digit	
Number of inputs	1 (differential pressure)	
	The KM3701 pressure measuring terminal enables direct measurement of pressure differences between two hose connections. The pressure difference is available in the fieldbus as a 16 bit value and can be measured between any points up to an ambient pressure of 10 bar. The status LEDs indicate proper function or errors such as over-range.	
Measuring error	3% (relative to full scale value)	
Measuring range	$\begin{aligned} & -100 \ldots+100 \mathrm{hPa} \\ & (-100 \ldots+100 \mathrm{mbar}) \end{aligned}$	up to 340 hPa (340 mbar)
Current consumption power contacts	- (no power contacts)	
Current consumpt. K-bus	typ. 15 mA	
Max. overload	500 hPa (500 mbar) differential, $5,000 \mathrm{hPa}$ (5 bar) to ambient	
Medium	non-aggressive gases	
Special features	-	
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$	
Approvals	CE, UL	
Weight	approx. 95 g	
Further information	www.beckhoff.com/KM3701	

\(\left.$$
\begin{array}{|l|l|l}\text { 2-channel relative pressure } \\
\text { measuring terminal } 7,500 \mathrm{hPa}\end{array}
$$ \quad \begin{array}{l}2-channel relative pressure

measuring terminal-1,000 ···+1,000 \mathrm{hPa}\end{array}\right]\)| |
| :--- |
| KM3702 KM3712 |

relative pressure measurement

	2	2
	The KM3702 pressure measuring terminal enables direct measurement of two pressure values at the hose connections. The pressure is determined as a pressure difference to the ambiance of the KM3702 and is available in the fieldbus as a 16 bit value. The status LEDs indicate proper function or errors such as over-range.	The KM3712 pressure measuring terminal enables direct measurement of two negative pressure values at the hose connections. The pressure is determined as a pressure difference to the ambiance of the KM3712 and is available in the fieldbus as a 16 bit value. The status LEDs indicate proper function or errors such as over-range.
	3 \% (relative to full scale value)	3 \% (relative to full scale value)
	$0 . . .7,500 \mathrm{hPa}$ (7.5 bar)	$-1,000 \ldots+1,000 \mathrm{hPa}(-1 \ldots+1 \mathrm{bar})$
	- (no power contacts)	- (no power contacts)
	typ. 15 mA	typ. 15 mA
	10,000 hPa (10 bar)	5,000 hPa (5 bar)
	non-aggressive gases	non-aggressive gases
	-	-
	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$
	CE, UL	CE, UL
	approx. 95 g	approx. 95 g
	www.beckhoff.com/KM3702	www.beckhoff.com/KM3712

Analog output |-10...+10 V

The KL4xxx Bus Terminals provide analog signal voltages in the common standard signal range of -10 to $+10 \mathrm{~V}, 0$ to 10 V , 0 to 20 mA and 4 to 20 mA . Inside the terminal the field side is electrically isolated from the K-bus and enables the interconnection to the desired potential groups. The 1-channel Bus Terminals are available for application instances, in which each signal must be completely electrically isolated. An additional electrically isolated 24 V DC supply can be created by the introduction of the KL9560 power supply terminal.

The Bus Terminals of this group differ in their different resolutions of the analog/ digital conversion, conversion speed and accuracy. For 1- and 2-channel Bus Terminals 1-, 2-, 3- and 4-wire sensor connections are available. 4-channel Bus Terminals can only be used with 1 - and 2 -wire connections.

The current output terminals 0 to 20 mA and 4 to 20 mA are fed from the 24 V DC supply and are electrically connected with it. The signal current flows from the output to ground.

Most Bus Terminals with voltage outputs are supplied from the internal K-bus. These Bus Terminals are potential-free and must be connected with the actuator through an additional ground wire. In contrast, the KL4404/08 and KL4434/38 Bus Terminals are supplied by the 24 V from the power contacts and use a power contact as a reference ground.

KL9570 | Power supply terminal see page $\quad 681$

	1-channel analog output terminal, $-10 \ldots+10 \mathrm{~V}, 12$ bit	2-channel analog output terminal, $-10 \ldots+10 \mathrm{~V}, 12$ bit
Technical data	KL4031 \| KS4031	KL4032 \| KS4032
Signal voltage	$-10 \ldots+10 \mathrm{~V}$	
Resolution	12 bit	
Technology	-	single-ended
Conversion time	$\sim 1.5 \mathrm{~ms}$	$\sim 1.5 \mathrm{~ms}$
Number of outputs	1	2
	The KL4031 analog output terminal generates signals in the range from -10 to +10 V . It combines two output channels, which have a common ground potential in one housing.	The KL4032 analog output terminal generates signals in the range from -10 to +10 V . It combines two output channels, which have a common ground potential in one housing.
Output error	$< \pm 0.1 \%$ (relative to end value)	$< \pm 0.1 \%$ (relative to end value)
Current consumption power contacts	- (no power contacts)	- (no power contacts)
Current consumpt. K-bus	typ. 75 mA	typ. 75 mA
Load	$>5 \mathrm{k} \Omega$ (short-circuit-proof)	$>5 \mathrm{k} \Omega$ (short-circuit-proof)
Special features	potential-free output	-
Operating temperature	$0 . .+55^{\circ} \mathrm{C}$	$-25 . .+60^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex, GL	CE, UL, Ex, GL
Weight	approx. 85 g	approx. 85 g
Further information	www.beckhoff.com/KL4031	www.beckhoff.com/KL4032
Special terminals		KL4032-00xx
Distinguishing features		special terminals see page 685

4-channel analog output terminal, $-10 \ldots+10 \mathrm{~V}, 12$ bit	4-channel analog output terminal, $-10 \ldots+10 \mathrm{~V}, 12$ bit	8-channel analog output terminal, $-10 \ldots+10 \mathrm{~V}, 12$ bit	2-channel analog input, 2-channel analog output terminal, -10 $\ldots+10 \mathrm{~V}, 12$ bit	2-channel analog output terminal, $-10 \ldots+10 \mathrm{~V}, 16$ bit
KL4034 \| KS4034	KL4434 \| KS4434	KL4438 \| KS4438	KL4494 \| KS4494	KL4132 \| KS4132

single-ended	single-ended	single-ended	single-ended	single-ended
$\sim 2 \mathrm{~ms}$	$\sim 4 \mathrm{~ms}$	$\sim 8 \mathrm{~ms}$	$<2 \mathrm{~ms}$	$\sim 1.5 \mathrm{~ms}$
4	4	8	2 outputs + 2 inputs	2
The KL4034 analog output terminal generates signals in the range from -10 to +10 V . It combines four output channels, which have a common ground potential in one housing.	The KL4434 analog output terminal generates signals in the range from -10 to +10 V . It combines four output channels, which have a common ground potential in one housing.	The KL4438 analog output terminal generates signals in the range from -10 to +10 V . It combines eight output channels in one housing and is thus particularly suited for space-saving use in the control cabinet. The 0 V power contact serves as the common ground potential.	The KL4494 analog output terminal combines two analog inputs and two analog outputs. The input and output channels of the Bus Terminal have a common ground potential. - input internal resistance: > $130 \mathrm{k} \Omega$	The KL4132 analog output terminal generates signals in the range from -10 to +10 V . It combines two output channels, which have a common ground potential in one housing.
$< \pm 0.1$ \% (relative to end value)	$< \pm 0.1$ \% (relative to end value)	$< \pm 0.2$ \% (relative to end value)	$< \pm 0.3$ \% (relative to end value)	$< \pm 0.1 \%$ (relative to end value)
- (no power contacts)	only load	only load	only load	- (no power contacts)
typ. 85 mA	typ. 20 mA	typ. 20 mA	typ. 70 mA	typ. 75 mA
$>5 \mathrm{k} \Omega$ (short-circuit-proof)				
-	-	high packing density	input/output terminal	increased resolution
$0 \ldots+55^{\circ} \mathrm{C}$				
CE, UL, Ex, GL	CE, UL, Ex, GL	CE, UL, Ex, GL	CE, UL, Ex	CE, UL, Ex
approx. 85 g	approx. 75 g	approx. 75 g	approx. 55 g	approx. 85 g
www.beckhoff.com/KL4034	www.beckhoff.com/KL4434	www.beckhoff.com/KL4438	www.beckhoff.com/KL4494	www.beckhoff.com/KL4132
KL4034-0010				KL4132-00xx
Siemens S5 format				special terminals see page

Analog output | 0... 10 V

	1-channel analog output terminal, $0 . . .10 \mathrm{~V}, 12$ bit	2-channel analog output terminal, $0 . . .10 \mathrm{~V}, 12$ bit	4-channel analog output terminal, $0 . . .10 \mathrm{~V}, 12$ bit
Technical data	KL4001 \| KS4001	KL4002 \| KS4002	KL4004 \| KS4004
Signal voltage	$0 \ldots 10 \mathrm{~V}$		
Resolution	12 bit		
Technology	-	single-ended	single-ended
Conversion time	$\sim 1.5 \mathrm{~ms}$	$\sim 1.5 \mathrm{~ms}$	$\sim 2 \mathrm{~ms}$
Number of outputs	1	2	4
	The KL4001 analog output terminal generates signals in the range from 0 to +10 V . It combines two output channels, which have a common ground potential in one housing.	The KL4002 analog output terminal generates signals in the range from 0 to +10 V . It combines two output channels, which have a common ground potential in one housing.	The KL4004 analog output terminal generates signals in the range from 0 to +10 V . It combines four output channels, which have a common ground potential in one housing.
Output error	< ± 0.1 \% (relative to end value)	$< \pm 0.1 \%$ (relative to end value)	$< \pm 0.1 \%$ (relative to end value)
Current consumption power contacts	- (no power contacts)	- (no power contacts)	- (no power contacts)
Current consumpt. K-bus	typ. 75 mA	typ. 75 mA	typ. 85 mA
Load	$>5 \mathrm{k} \Omega$ (short-circuit-proof)	$>5 \mathrm{k} \Omega$ (short-circuit-proof)	$>5 \mathrm{k} \Omega$ (short-circuit-proof)
Special features	potential-free output	-	-
Operating temperature	$-25 . .+60^{\circ} \mathrm{C}$	$-25 . . .+60^{\circ} \mathrm{C}$	$0 . .+55^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex	CE, UL, Ex	CE, UL, Ex
Weight	approx. 85 g	approx. 85 g	approx. 85 g
Further information	www.beckhoff.com/KL4001	www.beckhoff.com/KL4002	www.beckhoff.com/KL4004
Special terminals		KL4002-00xx	KL4004-0050
Distinguishing features		special terminals see page 685	Siemens S7 format

Analog output | $0 . . .20 \mathrm{~mA}$

	1-channel analog output terminal, $0 . . .20 \mathrm{~mA}, 12$ bit	2-channel analog output terminal, 0 ... $20 \mathrm{~mA}, 12$ bit
Technical data	KL4011 \| KS4011	KL4012 \| KS4012
Signal current	$0 . . .20 \mathrm{~mA}$	
Resolution	12 bit	
Technology	single-ended	single-ended
Conversion time	$\sim 1.5 \mathrm{~ms}$	$\sim 1.5 \mathrm{~ms}$
Number of outputs	1	2
	The KL4011 analog output terminal generates analog output signals in the range from 0 to 20 mA .	The KL4012 analog output terminal generates signals in the range from 0 to 20 mA . It combines two output channels, which have a common ground potential with the 24 V DC supply, in one housing. The output stages are powered by the 24 V DC supply.
Output error	$< \pm 0.1 \%$ (relative to end value)	$< \pm 0.1 \%$ (relative to end value)
Current consumption power contacts	typ. $30 \mathrm{~mA}+$ load	typ. $50 \mathrm{~mA}+$ load
Current consumpt. K-bus	typ. 60 mA	typ. 60 mA
Load	$<500 \Omega$	$<500 \Omega$
Power supply	24 V DC via power contacts (alternative 15 V DC with power supply terminal KL9515)	24 V DC via power contacts (alternative 15 V DC with power supply terminal KL9515)
Special features	-	-
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$	$-25 . .+60^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex, GL	CE, UL, Ex, GL
Weight	approx. 80 g	approx. 80 g
Further information	www.beckhoff.com/KL4011	www.beckhoff.com/KL4012
Special terminals		KL4012-00xx
Distinguishing features		special terminals see page 685

4-channel analog	8-channel analog output terminal, $0 \ldots .20 \mathrm{~mA}, 12$ bit $0 \ldots 20 \mathrm{~mA}, 12$ bit	2-channel analog output terminal, $0 \ldots 20 \mathrm{~mA}, 15 / 16$ bit
KL4414 \| KS4414	KL4418 \| KS4418	KL4112 \|KS4112

		15 bit, configurable to 16 bit
single-ended	single-ended	single-ended
$\sim 4 \mathrm{~ms}$	$\sim 8 \mathrm{~ms}$	$\sim 3.5 \mathrm{~ms}$
4	8	2
The KL4414 analog output terminal generates signals in the range from 0 to 20 mA . It combines four channels, which have a common ground potential in one housing. The output stages are powered by the 24 V DC supply.	The KL4418 analog output terminal generates signals in the range from 0 to 20 mA . It combines eight output channels in one housing and is thus particularly suited to space-saving use in the control cabinet. The 0 V power contact serves as the common ground potential.	The KL4112 analog output terminal generates signals in the range from 0 to 20 mA . It combines two output channels, which have a common ground potential with the 24 V DC supply, in one housing. The output stages are powered by the 24 V DC supply.
$< \pm 0.1$ \% (relative to end value)	$< \pm 0.2$ \% (relative to end value)	$< \pm 0.1$ \% (relative to end value)
typ. $60 \mathrm{~mA}+$ load	typ. $60 \mathrm{~mA}+$ load	typ. $50 \mathrm{~mA}+$ load
typ. 20 mA	typ. 20 mA	typ. 60 mA
$<350 \Omega$ (short-circuit-proof)	$<150 \Omega$ (short-circuit-proof)	< 500Ω
24 V DC via power contacts (alternative 15 V DC with power supply terminal KL9515)	24 V DC via power contacts (alternative 15 V DC with power supply terminal KL9515)	24 V DC via power contacts (alternative 15 V DC with power supply terminal KL9515)
-	high packing density	increased resolution
$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$
CE, UL, Ex, GL	CE, UL, Ex, GL	CE, UL, Ex
approx. 75 g	approx. 75 g	approx. 80 g
www.beckhoff.com/KL4414	www.beckhoff.com/KL4418	www.beckhoff.com/KL4112
		KL4112-00xx
		special terminals see page 685

Analog output | 4... 20 mA

	1-channel analog output terminal, 4... $20 \mathrm{~mA}, 12$ bit	2-channel analog output terminal, 4... $20 \mathrm{~mA}, 12$ bit
Technical data	KL4021 \| KS4021	KL4022 \| KS4022
Signal current	$4 . . .20 \mathrm{~mA}$	
Resolution	12 bit	
Technology	single-ended	single-ended
Conversion time	$\sim 1.5 \mathrm{~ms}$	$\sim 1.5 \mathrm{~ms}$
Number of outputs	1	2
	The KL4021 analog output terminal generates analog output signals in the range from 4 to 20 mA .	The KL4022 analog output terminal generates signals in the range from 4 to 20 mA . It combines two output channels, which have a common ground potential with the 24 V DC supply, in one housing. The output stages are powered by the 24 V DC supply.
Output error	$< \pm 0.1 \%$ (relative to end value)	$< \pm 0.1 \%$ (relative to end value)
Current consumption power contacts	typ. $30 \mathrm{~mA}+$ load	typ. $50 \mathrm{~mA}+$ load
Current consumpt. K-bus	typ. 60 mA	typ. 60 mA
Load	$<500 \Omega$	$<500 \Omega$
Power supply	24 V DC via power contacts (alternative 15 V DC with power supply terminal KL9515)	24 V DC via power contacts (alternative 15 V DC with power supply terminal KL9515)
Special features	-	-
Operating temperature	$0 . .+55^{\circ} \mathrm{C}$	$-25 . .+60^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex, GL	CE, UL, Ex, GL
Weight	approx. 80 g	approx. 80 g
Further information	www.beckhoff.com/KL4021	www.beckhoff.com/KL4022
Special terminals		KL4022-00xx
Distinguishing features		special terminals see page ${ }_{\text {a }}$

4-channel analog output terminal, $4 \ldots 20 \mathrm{~mA}, 12$ bit	8-channel analog output terminal, $4 \ldots .20 \mathrm{~mA}, 12$ bit
KL4424 \| KS4424	KL4428 \| KS4428

Position measurement | SSI encoder interfaces

The KL5001 SSI interface terminal enables the direct connection of an SSI encoder that is powered via the SSI interface. The interface circuit generates a pulse for reading the encoder and makes the incoming data stream available to the controller as a data word in the process image. Various operating modes, transmission frequencies and bit widths can be permanently stored in a control register. A screen can be connected via the KL9195 shield terminal.

The KL5051 bidirectional SSI interface terminal enables the connection of digital servo drives. The encoder is powered via the SSI interface, which consists of two logic channels. The first channel us used for the positioning of the drive, while the second channel is used to set releases, to transmit parameter data and to read status information and parameter values. The 5 V DC supply voltage can be generated with the KL9505 power supply terminal and fed into the power contacts.

KL9195 | Shield terminal see page 673

KL9505 | Power supply terminal see page 680

Technical data	KL5001 \| KS5001	KL5051 \| KS5051
Technology	SSI encoder interface	
Data direction	read	bidirectional
Number of channels	1 encoder interface	1 encoder interface
Encoder connection	binary input: $D+, D-$ binary output: $\mathrm{Cl}_{+}, \mathrm{Cl}-$	binary input: D+, D-, binary output: $\mathrm{Cl}_{+}, \mathrm{Cl}-$
Power supply	24 V DC via power contacts	5 V DC via power contacts (KL9505)
Current consumption power contacts	typ. $20 \mathrm{~mA}+$ load	no data
Current consumpt. K-bus	typ. 25 mA	typ. 75 mA
Signal input	difference signal (RS422)	difference signal (RS422)
Signal output	difference signal (RS422)	difference signal (RS422)
Encoder supply	24 V DC via power contacts	5 V DC
Data transfer rates	variable up to 1 MHz , 250 kHz default	1 MHz
Special features	-	bidirectional
Operating temperature	$-25 \ldots+60{ }^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex	CE, UL, Ex
Weight	approx. 60 g	approx. 80 g
Further information	www.beckhoff.com/KL5001	www.beckhoff.com/KL5051

Position measurement | Incremental encoder interface

The KL5121 Bus Terminal can be used to implement a linear path control. The terminal reads an incremental signal supplied by an incremental encoder or a pulse generator and switches the outputs at predefined counter states. The counter states can be transmitted to the terminal by the higher-level automation device in the form of a table. The position is registered with the latch input, which is activated/deactivated by the gate input. Up to four 24 V outputs can be switched. The LEDs indicate the states of the signals at the various inputs and outputs.

The KL5121 is particularly suitable for applications that are dependent on a short response time. The K-Bus cycle time, the fieldbus runtime and the processing speed of the controller are of no importance for the fast and accurate processing of positional data, since the Bus Terminal always switches the outputs with a constant time delay, irrespective of the control environment.

Incremental encoder interface
with programmable outputs

Position measurement | Incremental encoder interfaces

The KL5101 Bus Terminal processes differential signals according to the RS422/RS485 standard. This transmission type is particularly resistant to interference and is suitable for high transmission frequencies. The KL5111, KL5151 and KL5152 Bus Terminals have a single-ended input and are simple to wire up. The signal frequencies from less time-critical applications can be processed using these terminals.

All incremental encoder terminals use a quadrature decoder. Gate and latch inputs enable pre-processing in the Bus Terminal in order to be able to transfer positional values to the controller exactly upon an external event and thus support the referencing of a drive.

The KL5101 and KL5111 make a period duration measurement available with a resolution of 200 ns . Rotary speeds can thus be determined directly, since a calculation of the speed by means of position differences in the controller is in many cases not accurate enough due to jitter.

The KL5152 contains two encoders and provides a particularly inexpensive solution for a large number of channels if gate and latch functions are not needed.

The LEDs on the Bus Terminals indicate the states of the input signals for better diagnosis.

1-channel incremental encoder interface, 16 bit, differential inputs, RS485

Technical data	KL5101 \| KS5101
Technology	incremental encoder interface (RS485)
Number of channels	1 incremental encoder + 1 input
Encoder connection	A, A (inv), B, B (inv), zero, zero (inv), difference signal (RS485); status input
	The KL5101 terminal is an interface for the direct connection of incremental encoders with difference signal (RS485) or with single inputs. A 16 bit counter with a quadrature decoder and a 16 bit latch for the zero pulse can be read, set or enabled. Interval measurement with a resolution of 200 ns is possible. The G2 input allows the counter to be halted (high $=$ stop). The value is read with a rising edge at G1.
Power supply	24 V DC (-15 \%/+20 \%)
Current consum. pow. cont.	- (no power contacts)
Current consumpt. K-bus	typ. 60 mA
Encoder operating voltage	5 V DC
Encoder output current	0.5 A
Counter	16 bit, binary
Limit frequency	4 million increments/s (with 4-fold evaluation)
Quadrature decoder	1-, 2-, or 4-fold evaluation
Zero-pulse latch	16 bit
Commands	read, set, enable
Special features	-
Operating temperature	$-25 \ldots+60{ }^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex
Weight	approx. 85 g
Further information	www.beckhoff.com/KL5101
Special terminals	
Distinguishing features	

1-channel incremental encoder interface, 16 bit, single-ended, 24 V DC	1-channel incremental encoder interface, 32 bit, single-ended, 24 V DC	2-channel incremental encoder interface, 32 bit, single-ended, 24 V DC
KL5111 \| KS5111	KL5151 \| KS5151	KL5152 \| KS5152
incremental encoder interface 24 V DC, EN 61131-2	ype 1, "0": < 5 V DC, "1": > 15 V DC, typ. 5 mA	
1 incremental encoder		2 incremental encoders
A, B, C; 24 V (low: < 3 V , high: $>18 \mathrm{~V}$)	A, B, C, gate/latch, 24 V	A1, B1, A2, B2, 24 V
The KL5111 Bus Terminal is an interface for the direct connection of 24 V incremental encoders. A 16 bit counter with a quadrature decoder and a 16 bit latch for the zero pulse can be read, set or enabled. The state of the counter is transmitted quickly and securely to the PC, PLC or CNC over the fieldbus. Interval measurement with a resolution of 200 ns is possible.	The KL5151 Bus Terminal is an interface with 24 V inputs for the direct connection of incremental encoders. A 32 bit counter with a quadrature decoder and a 32 bit latch for the zero pulse can be read, set or enabled. The KL5151 inputs can optionally be used as single or two-counter inputs.	The KL5152 Bus Terminal is an interface with 24 V inputs for the direct connection of incremental encoders. Two 32 bit counters with quadrature decoders can be read or set.
24 V DC (-15 \%/+20 \%)	24 V DC (-15 \%/+20 \%)	24 V DC (-15 \%/+20 \%)
-	-	-
typ. 40 mA	typ. 40 mA	typ. 40 mA
24 V DC	24 V DC	24 V DC
-	-	-
16 bit, binary	32 bit, binary	32 bit, binary
1 million increments/s (with 4-fold evaluation)	400,000 increments/s (with 4-fold evaluation)	400,000 increments/s (with 4-fold evaluation)
4-fold evaluation	4-fold evaluation	4-fold evaluation
16 bit	32 bit	-
read, set, enable	read, set, enable	read
-	-	-
$0 \ldots+55^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$
CE, UL, Ex	CE, UL, Ex	CE, UL, Ex
approx. 60 g	approx. 50 g	approx. 50 g
www.beckhoff.com/KL5111	www.beckhoff.com/KL5151	www.beckhoff.com/KL5152
KL5111-00xx	KL5151-0021	
special terminals see page 685	incremental encoder 1×32 bit A, B, capture input and 1 driver output $24 \mathrm{~V}, 0.5 \mathrm{~A}$	

Communication | Serial interfaces

The KL60xx serial interfaces enable the connection of devices with RS232 or RS422/RS485 interfaces to the control level. The devices connected to the Bus Terminals communicate via the coupler and the network with the automation device. The active communication channel operates independently of the higher-level bus system in full duplex mode at up to 115.2 kbaud. This way, any desired number of serial interfaces can be used in the application without having to consider structural restrictions in the control device. The serial interface can be positioned close to the place of use, this way reducing the necessary cable lengths.

The RS232 interface enables high resistance to interference by means of electrically isolated signals, which in the case of the KL6021 is additionally supported by differential signal transmission according to RS422.

Technical data	KL6001 \| KS6001	KL6031 \| KS6031
Technology	RS232	
Data transfer rates	1,200...19,200 baud; default: 9,600 baud, 8 data bits, no parity and one stop bit	4,800...115,200 baud; default: 9,600 baud, 8 data bits, no parity and one stop bit
Data transfer channels	2 (1/1), TxD and RxD, full duplex	2 (1/1), TxD and RxD, full duplex
	The KL6001 and KL6031 serial an RS232 interface to be conn in conformity with the CCITT V. The active communication cha of the higher-level bus system 19,200 baud (KL6001) or 115. interface guarantees high imm electrically isolated signals.	interfaces allow devices with cted. The interface operates 28/DIN 66 259-1 standards. nel operates independently in full duplex mode at up to kbaud (KL6031). The RS232 unity to interference through
Data buffer	128 bytes receive buffer, 16 bytes transmit buffer	1024 bytes receive buffer, 128 bytes transmit buffer
Current consumption power contacts	- (no power contacts)	- (no power contacts)
Current consumpt. K-bus	typ. 55 mA	typ. 55 mA
Cable length	max. 15 m	max. 15 m
Line impedance	-	-
Special features	high interference immunity, electrically isolated signals	high interference immunity, electrically isolated signals
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex	CE, UL, Ex, GL
Weight	approx. 80 g	approx. 80 g
Further information	www.beckhoff.com/KL6001	www.beckhoff.com/KL6031
Special terminals	KL6001-0020	
Distinguishing features	standard format 5 bytes of user data	

Communication | AS-Interface

The AS-Interface master terminal is an extended master according to the M3 profile and enables the direct connection of AS-Interface slaves. The AS-compliant interface supports digital and analog slaves with the versions 2.0 and 2.1 , safety slaves and slaves with Combined Transaction Type 1 (profile S-7.3 and 7.4). Process data exchange, parameterisation and the diagnosis are fieldbus-independent. Together with the various Bus Couplers, the KL6201 or the KL6211 represents a universal AS-Interface/ fieldbus gateway. Together with the BK3120, the PROFIBUS DP V1 services can be used for communication with the KL6201 or the KL6211. Unlike the KL6201 AS-Interface master terminal, the KL6211 features power contacts. This enables direct connection to the AS-Interface supply via the KL9520 AS-Interface potential feed terminal or the KL9528 power supply terminal.

KL9520, KL9528 |AS-Interface system terminals see page 682
$\left.\begin{array}{ll|l} & \text { AS-Interface } \\ \text { master terminal }\end{array} \quad \begin{array}{l}\text { AS-Interface } \\ \text { master terminal } \\ \text { with power contacts }\end{array}\right]$

Communication | Wireless data exchange

The KM6551 terminal module is a data exchange unit for radio technology. The KM module is based on the IEEE802.15.4 standard. Data are exchanged or transferred via radio between two stand-alone control units, independent of the higher-level fieldbus. The outdoor range between two KM6551 units can be up to 300 m .

The data exchange module has a reverse SMA plug (Straight Medium Adapter) for connection of various radio antennas. The free choice of antenna enables adaptation to the respective environment. Status and data exchange are displayed via LEDs, thereby offering fast and simple diagnostics. A library is available for using the KM6551 module with TwinCAT.

Option 2 | Data exchange up to max. 7 devices

	Wireless data exchange terminal
Technical data	KM6551
Technology	wireless data exchange
Data transfer rates	250 kbit
Number of channels	1 radio connection

Communication | EnOcean, bidirectional

	EnOcean master terminal	EnOcean transmitter and receiver, 868.35 MHz	EnOcean transmitter and receiver, 315 MHz
Technical data	KL6581	KL6583	KL6583-0100
Technology	EnOcean		
Data transfer rates	125 kbaud	-	
Number of channels	1	-	-
	The bidirectional EnOcean technology receives signals from battery-less sensors or transmits data to actuators. With a radio signal range of 30 m , the wiring of buildings can be simplified significantly. The KL6581 EnOcean master terminal is the link between up to eight KL6583 EnOcean transmitter and receiver modules and the application.	The KL6583 EnOcean module enables EnOcean data to be transmitted and received. An antenna is integrated in the device. The KL6583 module is supplied with 24 V and offers a bus connection to the KL6581 EnOcean master terminal. The KL6583 is addressed via an address selection switch. Up to eight KL6583 modules can be connected to a KL6581.	The KL6583-0100 EnOcean module enables EnOcean data to be transmitted and received. An antenna is integrated in the device. The KL65830100 module is supplied with 24 V and offers a bus connection to the KL6581 EnOcean master terminal. The KL65830100 is addressed via an address selection switch. Up to eight KL6583-0100 modules can be connected to a KL6581.
Nominal voltage	24 V DC (-15 \%/+20 \%)	24 V DC (via KL6581)	24 V DC (via KL6581)
Current consum. pow. cont.	typ. $20 \mathrm{~mA}+$ load	typ. 20 mA (24 V DC)	typ. 20 mA (24 V DC)
Current consumpt. K-bus	typ. 60 mA	-	-
Cable length	max. 500 m	max. 500 m	max. 500 m
Connection	2×2-wires directly at the KL6583 (connection of max. 8 KL6583)	2×2-wires directly at the KL6581 Bus Terminal	2×2-wires directly at the KL6581 Bus Terminal
Data transfer standard	-	bidirectional	bidirectional
Frequency band	-	868.35 MHz (CE)	315 MHz (FCC)
Data transfer range	-	300 m in the free field, 30 m within buildings	300 m in the free field, 30 m within buildings
Special features	up to 8 KL6583 EnOcean transmitter and receiver modules	connection to KL6581 EnOcean master	connection to KL6581 EnOcean master
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$
Weight	approx. 85 g	approx. 90 g	approx. 90 g
Further information	www.beckhoff.com/KL6581	www.beckhoff.com/KL6583	www.beckhoff.com/KL6583-0100

Communication | EnOcean, unidirectional

	Serial interface for processing signals from the KL6023 wireless adapter with EnOcean radio technology	Wireless adapter for EnOcean radio technology
Technical data	KL6021-0023	KL6023
Technology	EnOcean	
Data transfer rates	9,600 baud	-
Number of channels	1	-
	The KL6021-0023 serial interface enables connection of a KL6023 wireless adapter. It processes the RS485 signals of the wireless adapter.	The KL6023 Wireless Adapter receives signals from batteryless sensors with EnOcean technology. These signals are converted by the Wireless Adapter to a RS485 signal and directly processed further by the KL6021-0023 serial Bus Terminal. The system does not limit the number of transmitters per receiver unit. In practice, between 25 and 100 transmitters per receiver are used.
Nominal voltage	-	via KL6021-0023
Current consumption power contacts	- (no power contacts)	-
Current consumpt. K-bus	typ. 65 mA	-
Cable length	max. 300 m	max. 300 m
Connection	2×2-wires directly at the KL6023 EnOcean module	2×2-wires directly at the KL6021-0023 Bus Terminal
Data transfer standard	-	unidirectional
Frequency band	-	868.35 MHz
Data transfer range	-	300 m in the free field, 30 m within buildings
Special features	high interference immunity, electrically isolated signals	connection to KL6021-0023 serial interface
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$
Weight	approx. 60 g	approx. 55 g
Further information	www.beckhoff.com/KL6021	www.beckhoff.com/KL6023

Communication | IO-Link, EIB/KNX, LON, MP-Bus, M-Bus

© IO-Link

IO-Link master terminal

EIB/KNX

Technical data	KL6224	KL6301
Technology	IO-Link	EIB/KNX
Data transfer rates	4.8 kbaud, 38.4 kbaud and 230.4 kbaud	9,600 baud
Number of channels	4	1
	The KL6224 IO-Link terminal enables connection of up to four IO-Link devices, e.g. actuators, sensors or combinations of both. A point-to-point connection is used between the terminal and the device. The terminal is parameterised via the master. 2-wire and 3-wire connections are supported. IO-Link is designed as an intelligent link between the fieldbus level and the sensor, wherein parameterisation information can be exchanged bidirectionally via the IO-Link connection. The parameterisation of the IO-Link devices with service data can be done from TwinCAT via register communication. In the standard setting, the KL6224 functions as a 4-channel input terminal, 24 V DC, which communicates with connected IO-Link devices, parameterises them and, if necessary, changes their operating mode.	The KL6301 EIB/KNX Bus Terminal is integrated in an EIB/KNX network and can receive/transmit data from/to other EIB/KNX devices. The Bus Terminal is commissioned or configured via TwinCAT function blocks. Several KL6301 can be used with a single Bus Coupler or a Bus Terminal Controller. Up to 256 group addresses can be received; sending is only limited by the application.
Nominal voltage	24 V DC (-15 \%/+20 \%)	24 V DC (-15 \%/+20 \%)
Current consumption power contacts	no data	-
Current consumpt. K-bus	typ. 85 mA	typ. 55 mA
Data transfer standard	-	twisted pair (TP)
Bus access	-	CSMA/CA
Special features	-	TwinCAT library: TwinCAT PLC EIB
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$
Approvals	CE	CE, UL, Ex
Weight	approx. 60 g	approx. 85 g
Further information	www.beckhoff.com/KL6224	www.beckhoff.com/KL6301

MPRTBUS
M-Bus

LON Bus Terminal	MP-Bus master terminal	M-Bus master terminal
KL6401	KL6771 \| KS6771	KL6781
LON	MP-Bus	M-Bus
$78 \mathrm{kbit} / \mathrm{s}$	1,200 baud	$300 \ldots 9,600$ baud (default 2,400 baud)
1	1	1
The KL6401 LON Bus Terminal enables direct connection of LON devices. Several KL6401 can be used with a single Bus Coupler or a Bus Terminal Controller. The KL6401 supports 62 SNVTs. All SNVT types can be configured as input or output variable via the KS2000 software. The KS2000 software generates an XIF file that is integrated in an LON tool.	The MP-Bus master terminal enables direct connection of MP-Bus slave devices. Up to sixteen field devices, eight drives and eight sensors can be connected to the KL6771. The Bus Terminal is configured and commissioned via TwinCAT function blocks. Several KL6771 terminals can be connected to the same Bus Coupler or Bus Terminal Controller.	The KL6781 M-Bus master terminal enables the direct connection of M-Bus devices. The M-Bus (Meter Bus) is a fieldbus for the acquisition of consumption data from electricity, water, gas or energy meters. The KL6781 does not contain the M-Bus protocol; instead, it converts the data present on the terminal bus into M-Bus compliant physics. 24 byte data are available on the K-bus for this. In conjunction with the TwinCAT M-Bus library, it is possible to work without an external M-Bus gateway, i.e. the M-Bus devices can be connected directly to the KL6781. With a total cable length of 300 m , up to 40 M -Bus devices (each with a current consumption of 1.5 mA) can be connected.
24 V DC (-15 \%/+20 \%)	24 V DC (-15 \%/+20 \%)	24 V DC (-15 \%/+20 \%)
only load	typ. $10 \mathrm{~mA}+$ load	max. 250 mA
typ. 55 mA	typ. 55 mA	typ. 65 mA
FTT-10, LPT	MP-Bus	M-Bus physics
CSMA	polling	master-slave mode (polling)
15 devices; TwinCAT library: TwinCAT PLC LON	8 drives/sensors; TwinCAT library: TwinCAT PLC MP-Bus	connection of up to 40 M-Bus devices; TwinCAT library: TwinCAT PLC M-Bus
$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$
CE, UL, Ex	CE, UL, Ex	CE, UL
approx. 85 g	approx. 85 g	approx. 60 g
www.beckhoff.com/KL6401	www.beckhoff.com/KL6771	www.beckhoff.com/KL6781

Communication | DALI, SMI

Communication | TwinSAFE

TwinSAFE enables networks with up to 1,024 TwinSAFE devices. The KL6904 Bus Terminal features certified safety function blocks, which are configured according to the application to be realised. Functions such as emergency stop, safety door monitoring etc. can thus easily be selected and linked. All blocks can be freely connected among each other and are complemented by operators such as AND, OR, etc. The necessary functions are configured using the TwinCAT System Manager and loaded into the terminal via the fieldbus.

For further information on TwinSAFE and the TwinSAFE products
see page 966

TwinSAFE Logic Bus Terminal,
4 safe outputs

| Technical data | KL6904 |
| :--- | :--- | :--- |
| Technology | TwinSAFE Logic |
| Safety standard | DIN EN ISO 13849-1:2008 (Cat 4, PL e) |
| and IEC 61508:2010 (SIL 3) | |

The KL6904 TwinSAFE Logic Bus Terminal can establish 15 connections (TwinSAFE connections). The TwinSAFE logic terminal has four safe, local outputs, so that safety applications can be realised with only two components (KL1904 and KL6904).

Nominal voltage	$24 \mathrm{~V} \mathrm{DC}(-15 \% /+20 \%)$
Current consum. pow. cont.	load-dependent
Current consumpt. K-bus	250 mA
Cycle time	$4 \ldots 100 \mathrm{~ms}$
Fault response time	\leq watchdog time (parameterisable)
Output current	0.5 A max./20 mA min. (per channel)
Permitted degree of contamination	2
Climate class EN 60721-3-3	3 K3
Installation position	horizontal
Special features	4 safe outputs
Operating temperature	$0 . . .+55^{\circ} \mathrm{C}$
EMC immunity/emission	conforms to EN 61000-6-2/EN 61000-6-4
Vibration/shock resistance	conforms to EN 60068-2-6/EN 60068-2-27
Approvals	CE, UL, Ex, TÜV SÜD
Weight	approx. 90 g
Further information	www.beckhoff.com/KL6904
Special terminals	KL6904-0001
Distinguishing features	pre-configured ex factory to 15 TwinSAFE connections

Manual operation
 KL8519

Manual operating modules with K-bus interface

The manual operating modules have been developed for the switching, controlling and observation of digital and analog signals. They enable the setting and reading of data and values in the case of failure of a controller, without having to open the control cabinet.

The manual operating modules can be installed in the control cabinet door using a snap-in technique; they are wired inside the control cabinet. Up to 31 modules can be inserted via the K-bus interface with K-bus extension. Connection to the KL9309 signalindependent transfer terminal takes place via the 20-pin shielded signal cable ZK8500-$8282-70 \times 0$. Connection to the Bus Terminal strand takes place via the KL9020 end terminal for bus extension. The signals are electrically isolated. Power and error LEDs indicate the status of the modules.

The electrically functionless KL8500 placeholder module covers the cut-out in the control cabinet in such a way that functional units can be retrofitted simply by exchanging the module.

KL9309 | Adapter terminal for manual operating modules see page 678

KL9020 | End terminal for bus extension see page $\quad 678$

ZK8500-8282-70x0 | Signal cable for manual operating modules see page 690

ZK1090-0101-1xxx | K-bus extension cable see page 689

Additional information

- www.beckhoff.com/KL85xx

	16-channel digital input signal module
Technical data	KL8519
Number of inputs	16
Number of outputs	-
Input filter	3.0 ms
Output current	-
Resolution	-
	 The KL8519 is a 16 -channel digital input signal module. 16 digital inputs can be connected, which indicate their status via LEDs and transmit the data to the controller. The LEDs are bicolour LEDs in the colours red and green and can be parameterised individually to suit the needs of the plant. The LEDs can also be addressed by the controller.
Nominal voltage	24 V DC ($-15 \% /+20$ \%)
Current consumpt. K-bus	50 mA
Switch settings	-
Diagnostics LED	bicolor LEDs, green and red
Bus interface	K-bus connection IN/OUT
Special features	-
Weight	approx. 150 g
Operating temperature	$0 \ldots+55{ }^{\circ} \mathrm{C}$
Approvals	CE
Further information	www.beckhoff.com/KL8519

4×2-channel digital output module	8-channel digital output module	8-channel analog output module $0 . . .10 \mathrm{~V}$
KL8524	KL8528	KL8548
-		8 (potentiometer)
2×4	8	$8(0 \ldots 10 \mathrm{~V})$
-	-	-
0.5 A	0.5 A	-
-	-	12 bit
	BECKHOFF n8528	

The KL8524 is a 4×2-channel digital output module, each equipped with two switches. The first is for switching between manual and automatic operation, while the second is used to set a 2 -stage output. It is possible to specify when and how the two outputs are switched. The status is indicated by a bicolour LED in green and yellow. The switching positions are readable via the PLC.

The KL8528 is an 8-channel digital output module. The outputs can be switched via a switch or specified by the controller. The status is indicated by a bicolour LED in green and yellow. The switching positions are readable via the PLC.

The KL8548 is an 8-channel analog output module for 0 to 10 V . The analog values must be specified individually for each channel via the controller or via a potentiometer. The actual output value is indicated by a bar graph. The position of the potentiometer is readable by the controller in each mode of operation.

$24 \mathrm{~V} \mathrm{DC}(-15 \% /+20 \%)$	$24 \mathrm{~V} \mathrm{DC}(-15 \% /+20 \%)$
40 mA	50 mA in ECO mode, 95 mA in full scale mode
auto/off/on	auto/manual, potentiometer
bicolor LEDS, green and yellow	yellow
K-bus connection IN/OUT	K-bus connection IN/OUT
State of the switch can be read by the controller.	Potentiometers and switches can be read via the PLC. Analog values are displayed in the form of bar charts.
approx. 160 g	approx. 215 g
$\mathbf{0} \ldots+55^{\circ} \mathrm{C}$	$0 . \ldots+55^{\circ} \mathrm{C}$
CE	CE
www.beckhoff.com/KL8528	www.beckhoff.com/KL8548

Power terminals | Siemens contactor, series Sirius 3R

The KL8001 power terminal, together with a power contactor, forms a complete distributed motor starter with any fieldbus connection. Apart from all the protective functions of a motor protection relay, the power terminal contains comprehensive diagnostics. By means of values such as current, voltage, active-power input and apparent power consumption or load condition, the control programmer is able to regulate the drive or a machine component in the best possible way and to protect them from damage and failure. The Bus Terminal block is fitted with a KL9060 adapter terminal instead of a KL9010 end terminal. The KL9060 is connected to a power terminal using a simple ribbon cable. Up to ten power terminals can be driven by one KL9060. No other wiring is necessary apart from a ground cable.

The power terminal switches the installed contactor and takes over all the functions of the motor protection relay. Apart from its purely protective function of switching off the motor when overloaded, the power terminal can carry out numerous diagnostic functions on the motor and make the information avail-

Power terminal for Siemens contactor, series Sirius 3R

Technical data	KL8001
Contactor	connection mechanism for Siemens contactor series Sirius 3R (switch size S00, Typ 3RT 10 1)
Measured values	current, voltage, power
Number of power terminals	up to 10 (at 140 mA typ. current consumption per contactor)

Like a standard motor protection relay the KL8001 power terminal is fitted to a power contactor up to a switching capacity of 5.5 kW .

Measuring accuracy	0.1 A AC
Current consumption power contacts	typ. $7 \mathrm{~mA}+$ load
Current consumpt. K-bus	typ. 150 mA
Measuring voltage	500 V AC
Power contacts	$24 \mathrm{~V} \mathrm{DC} \mathrm{(-15} \mathrm{\% /+20} \mathrm{\%)/1.4} \mathrm{~A} \mathrm{max.}, \mathrm{short-circuit-proof}$
Setting range of nominal current	$0.9 \ldots 9.9 \mathrm{~A}$
Current load	max. 25 A (fuse)
Short-circuit-proof	up to 5 kA
Internal resistance	$<1 \mathrm{~m} \Omega$
Tripping classes	class 5, 10, 15, 20, 25, 30 selectable
Type of connection power path	$2 \times$ flat plug socket, 10-pin
Type of K-bus connection	KL9060
Adapter terminal	conforms to EN 60947-4-1 (assignment type 2)/VDE 102
Short circuit behaviour	conforms to IEC 947, as well as UL and CSA
Triggering tolerance	$0 . .+55{ }^{\circ} \mathrm{C}$
Operating temperature	CE
Approvals	approx. 90 g
Weight	www.beckhoff.com/KL8001
Further information	

System terminals | Function terminals

The KL9195 Bus Terminal can be used for the connection of screens. The KL9195 connects the spring force contacts directly to the DIN rail, and can optimally ground incoming electromagnetic radiation. The two power contacts are looped through by the KL9195, allowing two wires to be connected to each power contact. The KL9010 bus end terminal is necessary for data exchange between the Bus Coupler and the Bus Terminals. Each assembly must be terminated at the right hand end with a KL9010 bus end terminal. The bus end terminal does not have any other function or connection facility. The KL9080 is used to identify potential groups (e.g. $230 \mathrm{~V} \mathrm{AC/24V} \mathrm{DC)}$. inserted between two potential groups, and indicates the separation through an orange coloured cover.

	Shield terminal	Shield terminal	Separation terminal
Technical data	KL9070	KL9195 \| KS9195	KL9080
Technology	shield terminal		separation terminal
Diagnostics in the process image	-		
Nominal voltage	$\leq 60 \mathrm{~V}$	arbitrary up to 230 V AC	separation terminal
Current load	$\leq 10 \mathrm{~A}$	$\leq 10 \mathrm{~A}$	-
Integrated fine-wire fuse	-	-	-
Power LED	-	-	-
Defect LED	-	-	-
PE contact	-	-	-
Shield connection	8 x	2 x	-
Current consumption K-bus	-	-	-
Electrical isolation	yes	-	-
Connection to DIN rail	yes	yes	-
Special features	dissipation of EMC interference via large copper surfaces on the DIN rail	-	placeholder terminal with K-bus transmission
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex	CE, UL, Ex, GL	CE, UL, Ex, GL
Weight	approx. 50 g	approx. 50 g	approx. 50 g
Further information	www.beckhoff.com/ KL9070	www.beckhoff.com/ KL9195	www.beckhoff.com/ KL9080

System terminals | Function terminals

The power feed terminals make it possible to set up various potential groups with any desired voltages (KL9190) or with the standard voltages of 24 V DC or $230 \mathrm{~V} \mathrm{AC}(120 \mathrm{~V} \mathrm{AC})$. The power feed terminals are available with or without finewire fuse. In order to monitor the supply voltage, the terminals with diagnostics report the status of the power feed terminal to the Bus Coupler through two input bits. It is thus possible for the controller to check the distributed peripheral voltage over the fieldbus. The operating point performance conforms to the input terminals KL1002 (24 V) and KL1702 (230 V).

The KL9180, KL9185 and KL9195 Bus Terminals allow the supply voltage to be accessed a number of times via spring force terminals. These Bus Terminals make it unnecessary to use additional terminal blocks on the terminal strip.

	Potential supply terminal, $24 \mathrm{~V} \text { DC }$	Potential supply terminal, $24 \text { V DC, }$ with diagnostics	Potential supply terminal, 120... 230 V AC
Technical data	KL9100 \| KS9100	KL9110 \| KS9110	KL9150 \| KS9150
Technology	potential supply terminal		
Diagnostics in the process image	-	yes	-
			:-2.... 00_{5} ${ }^{\circ}{ }^{\circ} 0_{0: C}^{C}$ ${ }^{\circ} \mathrm{O}$ ${ }^{9} \mathrm{CBO}_{8}^{8} \mathrm{C}$:
Nominal voltage	24 V DC	24 V DC	$\begin{aligned} & 120 \mathrm{~V} \mathrm{ACl} \\ & 230 \mathrm{~V} \mathrm{AC} \end{aligned}$
Current load	$\leq 10 \mathrm{~A}$	$\leq 10 \mathrm{~A}$	$\leq 10 \mathrm{~A}$
Integrated fine-wire fuse	-	-	-
Power LED	green	green	green
Defect LED	-	-	-
PE contact	yes	yes	yes
Shield connection	-	-	-
Current consumption K-bus	-	typ. 10 mA	-
Electrical isolation	yes	yes	yes
Connection to DIN rail	-	-	-
Special features	-	-	-
Operating temperature	$-25 \ldots+60^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex, GL	CE, UL, Ex, GL	CE, UL, Ex, GL
Weight	approx. 50 g	approx. 50 g	approx. 50 g
Further information	www.beckhoff.com/ KL9100	www.beckhoff.com/ KL9110	www.beckhoff.com/ KL9150

Potential supply terminal， 120．．． 230 V AC， with diagnostics	Potential supply terminal， any voltage up to $230 \text { V AC }$	Potential supply terminal， 24 V DC， with fuse	Potential supply terminal， 24 V DC， with diagnostics and fuse	Potential supply terminal， $120 . . .230 \mathrm{~V} \mathrm{AC}$ ， with fuse	Potential supply terminal， $120 . . .230 \mathrm{~V} \mathrm{AC}$ ， with diagnostics and fuse	Potential supply terminal， arbitrary， with fuse
KL9160｜KS9160	KL9190｜KS9190	KL9200	KL9210	KL9250	KL9260	KL9290
yes	－		yes	－	yes	－
： 多 $0 \mathrm{O}_{5}$ ${ }^{\circ} \mathrm{CO} \cdot \mathrm{C}$ ${ }^{\circ} 0_{0}: C$ ${ }^{9} \mathrm{CO}_{8}^{\mathrm{O}}-\mathrm{C}$		\cdots, \ldots 名多 $2 \mathrm{O} \cdot \mathrm{CB}$ 은． 0^{-C}				
$\begin{aligned} & 120 \mathrm{VACI} \\ & 230 \mathrm{VAC} \end{aligned}$	arbitrary	24 V DC	24 V DC	$\begin{aligned} & 120 \mathrm{VACI} \\ & 230 \mathrm{VAC} \end{aligned}$	$\begin{aligned} & 120 \mathrm{~V} \mathrm{ACI} \\ & 230 \mathrm{VAC} \end{aligned}$	arbitrary up to 230 V AC／DC
$\leq 10 \mathrm{~A}$						
－	－	．．．6．3 A				
green	－	green	green	green	green	－
－	－	red	red	red	red	－
yes						
－	－	－	－	－	－	－
typ． 10 mA	－	－	typ． 10 mA	－	typ． 10 mA	－
yes						
－	－	－	－	－	－	－
－	－	integrated fuse				
$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$
CE，UL，Ex，GL						
approx． 50 g	approx． 50 g	approx． 50 g	approx． 55 g	approx． 55 g	approx． 55 g	approx． 50 g
www．beckhoff．com／ KL9160	www．beckhoff．com／ KL9190	www．beckhoff．com／ KL9200	www．beckhoff．com／ KL9210	www．beckhoff．com／ KL9250	www．beckhoff．com／ KL9260	www．beckhoff．com／ KL9290

System terminals | Potential distribution

The KL918x potential distribution terminals enable - depending upon the type - the distribution of ground or supply potentials to external devices. Wiring work and separate potential distributors are saved. Eight ground points are required for the ground connection of 8-channel output terminals in 2-wire operating mode, e.g. KL2008, for which the KL9187 can be used. The KL9184 and KL9188 HD Bus Terminals (High Density) even make 16 connection points available in a compact housing.

	Potential distribution terminal, 2 terminal points per power contact	Potential distribution terminal, 4 terminal points at 2 power contacts	Potential distribution terminal, $8 \times 24 \mathrm{~V}$
Technical data	KL9180 \| KS9180	KL9185 \| KS9185	KL9186 \| KS9186
Technology	potential distribution	erminal	
Diagnostics in the process image	-		
Nominal voltage	arbitrary up to $230 \text { V AC }$	arbitrary up to $230 \mathrm{VAC}$	$\leq 60 \mathrm{VDC}$
Current load	$\leq 10 \mathrm{~A}$	$\leq 10 \mathrm{~A}$	$\leq 10 \mathrm{~A}$
Integrated fine-wire fuse	-	-	-
Power LED	-	-	-
Defect LED	-	-	-
PE contact	yes	-	-
Shield connection	-	-	-
Current consumption K-bus	-	-	-
Electrical isolation	-	-	yes
Connection to DIN rail	-	-	-
Special features	-	-	$8 \times 24 \mathrm{~V}$ connection
Operating temperature	$0 . . .55{ }^{\circ} \mathrm{C}$	$-25 . . .+60^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex, GL	CE, UL, Ex, GL	CE, UL, Ex, GL
Weight	approx. 50 g	approx. 50 g	approx. 50 g
Further information	www.beckhoff.com/ KL9180	www.beckhoff.com/ KL9185	www.beckhoff.com/ KL9186

Potential distribution terminal, $8 \times 0 \mathrm{~V}$	Potential distribution terminal, 2×8 connected terminal points	Potential distribution terminal, 8×2 connected terminal points	Potential distribution terminal, 1×16 connected terminal points	Potential distribution terminal, $8 \times 24 \mathrm{~V}, 8 \times 0 \mathrm{~V}$	Potential distribution terminal, $16 \times 24 \mathrm{~V}$	Potential distribution terminal, $16 \times 0 \mathrm{~V}$
KL9187 \| KS9187	KL9181	KL9182	KL9183	KL9184	KL9188	KL9189
		:				
$\leq 60 \mathrm{VDC}$	$\leq 60 \mathrm{~V} \mathrm{AC/DC}$	$\leq 60 \mathrm{~V} \mathrm{AC/DC}$	$\leq 60 \mathrm{~V} \mathrm{AC/DC}$	$\leq 60 \mathrm{VDC}$	$\leq 60 \mathrm{VDC}$	$\leq 60 \mathrm{VDC}$
$\leq 10 \mathrm{~A}$	max. 10 A (per terminal point)	max. 10 A (per terminal point)	max. 10 A (per terminal point)	$\leq 10 \mathrm{~A}$	$\leq 10 \mathrm{~A}$	$\leq 10 \mathrm{~A}$
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
yes	500 V (K-bus/ ield potential)	500 V (K-bus/ field potential)	500 V (K-bus/ field potential)	yes	yes	yes
-	-	-	-	-	-	-
$8 \times 0 \mathrm{~V}$ connection	2×8-way bridges	8×2-way bridges	16-way bridge	$8 \times 24 \mathrm{~V}$ and $8 \times 0 \mathrm{~V}$ connection	$16 \times 24 \mathrm{~V}$ connection	$16 \times 0 \mathrm{~V}$ connection
$-25 \ldots+60^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C}$
CE, UL, Ex, GL	CE	CE	CE	CE, UL, Ex, GL	CE, UL, Ex, GL	CE, UL, Ex, GL
approx. 50 g	approx. 60 g					
www.beckhoff.com/ KL9187	www.beckhoff.com/ KL9181	www.beckhoff.com/ KL9182	www.beckhoff.com/ KL9183	www.beckhoff.com/ KL9184	www.beckhoff.com/ KL9188	www.beckhoff.com/ KL9189

System terminals | Function terminals

	End terminal	End terminal with adapter for KL8001 power terminals	End terminal for bus extension	Coupler terminal for bus extension	Adapter terminal for manual operating modules
Technical data	KL9010	KL9060	KL9020	KL9050	KL9309
Technology	end terminal			coupler terminal	adapter terminal
	Each assembly must be terminated at the right hand end with a KL9010 bus end terminal.	The KL9060 Bus Terminal enables a connection to the KL8001. For further information see page	The KL9020 forms a properly working unit together with a KL9050 or a KL85xx. No further parameterisation or configuration work is necessary.	The KL9050 coupler terminal is the complement to a KL9020. The second RJ45 socket allows the whole system to be extended by 31 stations.	The KL9309 adapter terminal is connected via shielded ZK8500-8282-70x0 signal cable with the KL85xx manual operation modules. Further information see page
Nominal voltage	-	24 V DC (-15 \%/+20 \%)	-	24 V DC (-15 \%/+20 \%)	24 V DC (-15 \%/+20 \%)
Current load	-	$\leq 10 \mathrm{~A}$	-	$\leq 10 \mathrm{~A}$	$\leq 10 \mathrm{~A}$
Power LED	-	-	-	green	green
Current consumption	-	-	typ. 70 mA (K-bus)	typ. 70 mA (24 V K-bus) + (total K-bus current)/ 4, max. 200 mA	-
Distance between stations	-	-	max. 5 m between KL9020 and KL9050	max. 5 m between KL9050 and KL9050	-
Starting current	-	-	-	$2.5 \times$ continuous current	-
Current supply K-bus	-	-	-	up to 400 mA	-
Electrical isolation	-	500 V (power contact/ supply voltage/K-bus)	500 V (power contact/ supply voltage/K-bus)	500 V (power contact/ supply voltage/fieldbus)	500 V (power contact/ supply voltage/fieldbus)
Special features	end terminal for bus communication	connection to KL8001 via 20-pin flat ribbon plug	end terminal for K-bus extension	coupler terminal for K-bus extension (max. 64 Bus Terminals)	passive Bus Terminal for the connection of KL85xx manual operating modules
Operating temperature	$-25 \ldots+60^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$	$0 . . .+55^{\circ} \mathrm{C}$	$0 . . .+55^{\circ} \mathrm{C}$	$0 . . .+55^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex, GL	CE	CE, UL, Ex, GL	CE, Ex, GL	CE
Weight	approx. 50 g	approx. 65 g	approx. 45 g	approx. 75 g	approx. 85 g
Further information	www.beckhoff.com/ KL9010	www.beckhoff.com/ KL9060	www.beckhoff.com/ KL9020	www.beckhoff.com/ KL9050	www.beckhoff.com/ KL9309

System terminals | Diode array Bus Terminals

Diodes perform different tasks in control circuits. They decouple, rectify or provide for the freerunning of a coil. The Bus Terminals unite diodes in different circuits and simplify integration into the control cabinet by their compact design. The circuits offered, with common anode or cathode and the individual diodes, minimise the wiring effort in the control cabinet.

	Diode array terminal, 4 potential-free diodes	Diode array terminal, 7 diodes (with a common cathode)	Diode array terminal, 7 diodes (with a common anode)
Technical data	KL9300 \| KS9300	KL9301 \| KS9301	KL9302 \| KS9302
Technology	free-wheeling or decoupl	g diodes	
Number of diodes	4	7	
Interconnection	potential-free	common cathode	common anode
Nominal cut-off voltage	$1,000 \mathrm{~V}$ (diodes)	1,000 V (diodes)	$1,000 \mathrm{~V}$ (diodes)
Output current	1 A on each diode	1 A on each diode	1 A on each diode
Peak current	2.5 A (100 ms)	2.5 A (100 ms)	2.5 A (100 ms)
Voltage drop	0.7 V typ.	0.7 V typ.	0.7 V typ.
Current consumption K-bus	-	-	-
Isolation voltage (channel/channel)	$<200 \mathrm{~V}$	< 200 V	$<200 \mathrm{~V}$
Electrical isolation	1,500 V (K-bus/field)	1,500 V (K-bus/field)	1,500 V (K-bus/field)
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex	CE, UL, Ex	CE, UL, Ex
Weight	approx. 50 g	approx. 55 g	approx. 55 g
Further information	www.beckhoff.com/ KL9300	www.beckhoff.com/ KL9301	www.beckhoff.com/ KL9302

System terminals | Power supply terminals

The KL94xx and KL95xx terminal series are designed for the modified feeding of the operating voltage into the terminal strand. The KL9400 power supply terminal enables the refreshment of the K-bus, via which data exchange takes place between Bus Couplers and Bus Terminals. Each Bus Terminal requires a certain amount of current from the K-bus (see technical data: "Current consumption K-bus"). This current is fed into the K-bus by the relevant Bus Coupler's power supply unit. When configuring a large number of Bus Terminals, the 5 V power supply to the K-bus can be increased by 2 A via the KL9400.

The KL95xx power supply terminals produce different output voltages from the input voltage (24 V DC) that can be accessed at the terminals. The following Bus Terminals are also supplied with this voltage via the power contacts. The power LEDs indicate the operating states of the terminals; short-circuits or overloads are indicated by the overcurrent LEDs. There is no electrical isolation of the input and output voltage.

	Power supply terminal for refreshing the K-bus	Power supply terminal, 5 V DC
Technical data	KL9400 \| KS9400	KL9505 \| KS9505
Technology	power supply terminal	power supply terminal, 5 V DC, with diagnostics
Diagnostics	-	yes
		The KL9505 generates 5 V from the fed-in 24 V without electrical isolation.
Input voltage	24 V DC (-15 \%/+20 \%)	24 V DC (-15 \%/+20 \%)
Output voltage	5 V DC	5 V DC ± 1 \%
Output current	2 A for K-bus supply	0.5 A
Short-circuit-proof	yes	yes
Residual ripple	-	$<5 \mathrm{mV}$
Current consumption K-bus	-	-
Electrical isolation	-	-
Special features	-	stabilised analog voltage
Operating temperature	$-25 . . .+60^{\circ} \mathrm{C}$	$0 . . .+55^{\circ} \mathrm{C}$
Approvals	CE, UL, Ex, GL	CE, UL, Ex
Weight	approx. 65 g	approx. 65 g
Further information	www.beckhoff.com/KL9400	www.beckhoff.com/KL9505

Power supply terminal, $8 \mathrm{~V} \text { DC }$	Power supply terminal, $10 \mathrm{~V} \mathrm{DC}$	Power supply terminal, $12 \mathrm{~V} \text { DC }$	Power supply terminal, $15 \mathrm{~V} \text { DC }$	Power supply terminal, 24 V DC, electrical isolation
KL9508 \| KS9508	KL9510 \| KS9510	KL9512 \| KS9512	KL9515 \| KS9515	KL9560 \| KS9560
power supply terminal, 8 V DC, with diagnostics	power supply terminal, 10 V DC, with diagnostics	power supply terminal, 12 V DC, with diagnostics	power supply terminal, 15 V DC, with diagnostics	power supply terminal, $24 \mathrm{VDC}$
The KL9508 generates 8 V from the fed-in 24 V without electrical isolation.	The KL9510 generates 10 V from the fed-in 24 V without electrical isolation.	The KL9512 generates 12 V from the fed-in 24 V without electrical isolation.	The KL9515 generates 15 V from the fed-in 24 V without electrical isolation.	The KL9560 generates potential-free 24 V from the fed-in 24 V
24 V DC (-15 \%/+20 \%)				
8 V DC ± 1 \%	10 V DC ± 1 \%	12 V DC ± 1 \%	15 V DC ± 1 \%	24 V DC (-15 \%/+5 \%)
0.5 A	0.5 A	0.5 A	0.5 A	$\leq 0.1 \mathrm{~A}$
yes	yes	yes	yes	yes, automatic restart
$<5 \mathrm{mV}$	$<5 \mathrm{mV}$	$<5 \mathrm{mV}$	$<5 \mathrm{mV}$	no data
-	-	-	-	$1,500 \mathrm{VAC}$ constant load input/output voltage
stabilised analog voltage	stabilised analog voltage	stabilised analog voltage	stabilised analog voltage	analog voltage with electrical isolation
$0 \ldots+55^{\circ} \mathrm{C}$				
CE, UL, Ex	CE, UL, Ex	CE, UL, Ex	CE, UL, Ex	CE, UL, Ex, GL
approx. 65 g				
www.beckhoff.com/KL9508	www.beckhoff.com/KL9510	www.beckhoff.com/KL9512	www.beckhoff.com/KL9515	www.beckhoff.com/KL9560

System terminals | AS-Interface

An AS-Interface network consists of a special power supply unit, a master and a larger number of slaves. Each communication device is connected in parallel to the AS-Interface cable, and receives its supply voltage and also exchanges its data via this connection. The transmitter changes its current consumption according to its transmission bits. The AS-Interface power supply unit converts this current change into a voltage change, which can be measured by all devices. An AS-Interface power supply unit supplies the network with a voltage of 30 V DC in order to ensure that sufficient voltage is available to all devices with maximum cable length and maximum current consumption.

The KL9528 Bus Terminal is an AS-Interface power supply unit with an output current of up to 1.25 A . The AS-Interface supply voltage of 30 V DC is generated from the 24 V DC control voltage. The KL9520 Bus Terminal is intended for AS-Interface Power24V applications. Thanks to an internal circuit, the 24 V DC control voltage is usable for a simple AS-Interface network. An AS-Interface voltage of 24 V DC is sufficient in many small networks if the cable lengths and current consumption do not cause a large voltage drop.

	AS-Interface potential feed terminal with filter	AS-Interface power supply terminal 24 V DC/30 V DC, 1.25 A
Technical data	KL9520 \| KS9520	KL9528 \| KS9528
Technology	potential feed terminal	power supply terminal
Diagnostics	-	
	The KL9520 potential feed terminal uncouples the input and output signal through an integrated filter and enables the supply of AS-Interface networks from standard power supply units or another AS-Interface network.	The KL9528 power supply terminal generates a 30 V DC output voltage from the 24 V DC control voltage with high-frequency decoupling for the operation of an AS-Interface network. The connection to the KL6201 AS-Interface master is established via plugs.
Input voltage	up to 35 V DC	21...28.8 V DC
Output voltage	up to 35 V DC	30 V DC (+5 \%/- 5 \%)
Output current	-	max. 1.25 A
Short circuit current	-	max. 1.3 A
Current load	max. 2 A	-
Current consumption K-bus	-	typ. 10 mA
Electrical isolation	-	1,500 V AC constant load field side/K-bus
Special features	no electrical isolation	-
Operating temperature	$0 . . .+55^{\circ} \mathrm{C}$	$0 \ldots+55^{\circ} \mathrm{C}$
Approvals	CE	CE
Weight	approx. 90 g	approx. 150 g
Further information	www.beckhoff.com/KL9520	www.beckhoff.com/KL9528

System terminals | Surge filter system and field supply

System terminals | Buffer capacitor terminal

The KL9570 Bus Terminal contains highperformance capacitors for stabilising supply voltages. It can be used in connection with small drive terminals. Low internal resistance and high pulsed current capability enable good buffering in parallel with a power supply unit. Return currents are stored, particularly in the context of drive applications, thereby preventing overvoltages. If the fed back energy exceeds the capacity of the capacitors, the KL9570 switches the load voltage through to the terminal points 1 and 5 . The energy is dissipated by the connection of an external ballast resistor.

KL25xx | Motion terminals see page

	Buffer capacitor terminal	
Technical data	KL9570 \| KS9570	
Technology	buffer capacitor terminal	
Diagnostics	-	
		$\begin{aligned} & \text { pop/pr} \\ & 25 \mathrm{~g} \end{aligned}$

The KL9570 buffers the connected voltage via its integrated capacitors and connects the external brake resistor if the internal voltage of approx. 56 V is exceeded.

Nominal voltage	50 V
Capacity	$500 \mu \mathrm{~F}$
Ripple current (max.)	$10 \mathrm{~A} @ 100 \mathrm{kHz}$
Internal resistance	$<20 \mathrm{~m} \Omega$ @ 100 kHz
Surge voltage protection	$>56 \mathrm{~V}$
Recommended ballast resistor	see documentation
Overvoltage control range	$\pm 2 \mathrm{~V}$
Ballast resistor clock rate	load-dependent, 2-point control
Electrical isolation	$1,500 \mathrm{~V}$ (K-bus/field potential)
Operating temperature	$0 \ldots+55^{\circ} \mathrm{C}$
Approvals	CE, Ex
Weight	$\mathrm{approx.65g}$
Further information	www. beckhoff.com/KL9570

Ordering instructions for special terminals and couplers

All Bus Couplers and Bus Terminals are supplied with a standard configuration. The settings can be found on the relevant catalog pages. In addition to this standard configuration, specific coupler and terminal types with modified software or hardware are available. These variants have an order number with additional four figures. Therefore, if you do require a configuration other than standard, quote this extended number when you place your order. The following table provides a summary of the Bus Couplers and Bus Terminals that are available with modified default settings.

Ordering inform	
Bus Coupler	
BK8100-0060	watchdog special setting 60 s
BK8100-1001	watchdog special setting 10 s
BK9055-1000	EtherNet/IP "Compact" Bus Coupler for up to 64 Bus Terminals (255 with K-bus extension), default IP address: 192.168.1.xxx
BK9105-1000	EtherNet/IP Bus Coupler for up to 64 Bus Terminals (255 with K-bus extension), default IP address: 192.168.1.xxx
Digital input	
KL1052-0010	96 V DC positive and negative switching, not in accordance with the EN $61131-2$ specifications: I high $=3 \mathrm{~mA}, \mathrm{I}$ low $=0.5 \mathrm{~mA}$
KL1232-0001	plus-switching, positive edge-triggered input, 10 ms pulse extension, input filter 0.2 ms
KL1232-0002	plus-switching, positive edge-triggered input, 20 ms pulse extension, input filter 0.2 ms
KL1232-0010	plus-switching, positive edge-triggered input, 100 ms pulse extension, input filter 3.0 ms
KL1232-0100	plus-switching, negative edge-triggered input, 100 ms pulse extension, input filter 0.2 ms
KL1232-0110	plus-switching, negative edge-triggered input, 100 ms pulse extension, input filter 3.0 ms
KL1232-1000	negative switching, positive edge-triggered input, 100 ms pulse extension, input filter 0.2 ms
KL1232-1001	5 V , negative switching, negative edge-triggered input, 20 ms pulse extension, input filter 0.2 ms
KL1232-1010	negative switching, positive edge-triggered input, 100 ms pulse extension, input filter 3.0 ms
KL1232-1100	negative switching, negative edge-triggered input, 100 ms pulse extension, input filter 0.2 ms
KL1232-1110	negative switching, negative edge-triggered input, 100 ms pulse extension, input filter 3.0 ms
KL1232-2000	plus switching, positive edge-triggered input, 200 ms pulse extension, input filter 0.2 ms
KL1501-0010	gate-counter with auto-reset and setting A0
KL1501-0011	up/down counter with 5 V inputs, 24 V DC outputs
KL1702-0010	230 VAC input circuit with type 2 characteristics
KL1712-0010	$24 \mathrm{VAC} / \mathrm{DC}$ input circuit
Digital output	
KL2502-0012	time-delayed setting of the outputs
KL2502-3020	5 V output, 30 kHz limit frequency
KL2521-0010	with additional outputs (230 V AC/DC, 100 mA) instead of the additional inputs of the default variant
KL2521-0024	for 24 V signal level
KL2541-0006	stepper motor terminal 50 V DC, $5 \mathrm{~A}, 5 \mathrm{~V}$ encoder supply
KL2692-1001	2 digital inputs, 2 potential-free relays, end terminal variant
KL2702-0002	2-channel solid state load relay up to 230 V AC/DC, 2 A
KL2702-0020	2-channel solid state load relay up to 230 V AC/DC, 1.5 A
KL2722-0010	without reciprocal locking of the channels, total current 1 A
KL2732-0010	without reciprocal locking of the channels, total current 1 A
KL2751-0011	dimmer terminal without power contacts
KL2751-1200	dimmer terminal for 120 VAC
KL2761-0011	1-channel universal dimmer terminal, $230 \mathrm{VAC}, 600 \mathrm{VA}(\mathrm{W}), 50 \mathrm{~Hz}$, without power contacts
KL2791-0011	1 -channel AC motor speed controller, $230 \mathrm{~V} \mathrm{AC}, 200 \mathrm{VA}$, max. 0.9 A , without power contacts
KL2791-1200	1 -channel AC motor speed controller, $120 \mathrm{~V} \mathrm{AC}, 100 \mathrm{VA}$
Analog input	
KL3002-0010	Siemens S5 format
KL3002-0011	fast μ P, scan time approx. 0.5 ms
KL3002-0050	Siemens 57 format
KL3012-0011	altered range: $0 \ldots . .21 .5 \mathrm{~mA}$, maximum value corresponds to 21.5 mA instead of 20 mA
KL3012-0012	fast μ P, scan time approx. 0.5 ms
KL3012-0050	Siemens S7 format
KL3022-0010	Siemens 55 format
KL3022-0011	fast μ P, scan time approx. 0.5 ms

KL3022-0050	Siemens S7 format
KL3042-0010	Siemens S5 format
KL3042-0011	fast $\mu \mathrm{P}$, scan time approx. 0.5 ms
KL3042-0012	altered range: $0 \ldots . .21 .5 \mathrm{~mA}$, maximum value corresponds to 21.5 mA instead of 20 mA
KL3042-0050	Siemens S7 format
KL3052-0010	Siemens S5 format
KL3052-0011	fast $\mu \mathrm{P}$, scan time approx. 0.5 ms
KL3052-0012	changed diagnostic level ($<3.5 \mathrm{~mA}$ or $>21.5 \mathrm{~mA}$)
KL3052-0050	Siemens S7 format
KL3054-0050	Siemens S7 format
KL3062-0010	Siemens S 5 format
KL3062-0011	voltage level $0 . . .20 \mathrm{~V}$
KL3062-0012	fast $\mu \mathrm{P}$, scan time approx. 0.5 ms
KL3062-0013	voltage level 0... 30 V
KL3062-0014	voltage level $0 . . .50 \mathrm{~V}$
KL3062-0050	Siemens S7 format
KL3064-0010	Siemens S 5 format
KL3064-0011	voltage level $0 . . .20 \mathrm{~V}$
KL3064-0050	Siemens S7 format
KL3102-0050	Siemens S7 format
KL3112-0050	Siemens S7 format
KL3122-0050	Siemens S7 format
KL3172-0500	2-channel analog input terminal, $0 . .500 \mathrm{mV}$
KL3202-0010	PT200
KL3202-0011	PT200 in Siemens S5 format
KL3202-0012	PT500
KL3202-0013	PT500 in Siemens S5 format
KL3202-0014	PT1000
KL3202-0015	PT1000 in Siemens S5 format
KL3202-0016	Ni100
KL3202-0017	Ni100 in Siemens S5 format
KL3202-0020	resistance measurement $0 . .1 .2 \mathrm{k} \Omega$
KL3202-0021	PT100 in Siemens S5 format
KL3202-0023	Ni120
KL3202-0024	Ni120 in Siemens S5 format
KL3202-0025	Ni1000
KL3202-0026	Ni1000 in Siemens S5 format
KL3202-0027	resistance measurement $10 . . .10 \mathrm{k} \Omega$
KL3202-0028	Resolution increased to $0.01^{\circ} \mathrm{C}$; the measurement range is reduced to $-40^{\circ} \mathrm{C}$ to $+128^{\circ} \mathrm{C}$. The absolute accuracy is $0.3^{\circ} \mathrm{C}$, differential error is $0.1^{\circ} \mathrm{C}$.
KL3202-0029	Ni1000 per Landis\&Staefa characteristic curve (Siemens, 100° corresponds to 1,500 Ω)
KL3204-0014	PT1000
KL3204-0021	PT100 in Siemens S5 format
KL3204-0025	Ni1000, 4-channel
KL3204-0029	Ni1000 per Landis\&Staefa characteristic curve (Siemens, 100° corresponds to 1,500 Ω)
KL3312-0010	type J
KL3312-0011	type J in Siemens S5 format
KL3312-0012	type L
KL3312-0013	type L in Siemens S5 format
KL3312-0014	type B
KL3312-0015	type B in Siemens S5 format
KL3312-0016	type E
KL3312-0017	type E in Siemens S5 format
KL3312-0018	type N
KL3312-0019	type N in Siemens S 5 format
KL3312-0020	type R
KL3312-0021	type R in Siemens S5 format

KL3312-0022	type S
KL3312-0023	type S in Siemens S5 format
KL3312-0024	type T
KL3312-0025	type T in Siemens S5 format
KL3312-0026	type U
KL3312-0027	type U in Siemens S5 format
KL3312-0028	$0 \ldots 120 \mathrm{mV}$ measurement
KL3312-0029	type K in Siemens S5 format
KL3312-0040	expanded temperature range for type S and L type $\mathrm{S}:-50 \ldots+1,70{ }^{\circ} \mathrm{C}$ (as supplied type $\mathrm{L}: ~-100 \ldots+900{ }^{\circ} \mathrm{C}$)
KL3312-0110	type J, Fahrenheit scaling
KL3312-2000	setting of reference junction temperature via process image, unit $1 / 256^{\circ} \mathrm{C}$ in a 16 bit word
KL3312-2100	external reference point temperature specification via process image is possible, the unit is $1 / 256{ }^{\circ} \mathrm{C}$ in 16 -bit format, fast conversion time 65 ms
KL3351-0001	1-channel resistor bridge terminal (strain gauge), with faster measurement time approx. 10 ms
KL3403-0010	3-phase power measurement terminal, current path designed for 5 A transducer (1\% measuring accuracy I)
KL3403-0020	3-phase power measurement terminal, current path designed for 20 mA , optimised for electronic current transformer
KL3403-0022	3-phase power measurement terminal, current path and voltage input designed for 20 mA
KL3403-0333	3-phase power measurement terminal, $500 \mathrm{VAC}, 333 \mathrm{mV} \mathrm{AC}$
KM3701-0340	differential pressure up to 340 hPa
Analog output	
KL4002-0010	Siemens S5 format
KL4002-0011	fast μ P, scan time approx. 0.15 ms
KL4002-0050	Siemens S7 format
KL4004-0050	Siemens S7 format
KL4012-0010	Siemens S 5 format
KL4012-0011	altered range: $0 \ldots .21 .5 \mathrm{~mA}$, maximum value corresponds to 21.5 mA instead of 20 mA
KL4012-0050	Siemens S7 format
KL4022-0010	Siemens S5 format
KL4022-0050	Siemens S7 format
KL4032-0010	Siemens S5 format
KL4032-0011	fast $\mu \mathrm{P}$, scan time approx. 0.15 ms
KL4032-0050	Siemens S7 format
KL4034-0010	Siemens S5 format
KL4112-0010	Siemens S5 format
KL4112-0050	Siemens S7 format
KL4132-0010	Siemens S5 format
KL4132-0050	Siemens S7 format
Special functions	
KL5111-0010	A, B, C signals: 5 V inputs
KL5111-0011	special function: latch input sets counter to zero
KL5111-0012	latches on both edges, A, B, C inputs 24 V
KL5111-0013	latches on both edges, $\mathrm{A}, \mathrm{B}, \mathrm{C}$ inputs 5 V
KL5111-0015	frequency measurement over a selectable time window; 24 V inputs
KL5111-0016	frequency measurement over a selectable time window; 5 V inputs
KL5111-0020	12 V input circuit
KL5151-0021	incremental encoder 1×32 bit A, B, capture input and 1 driver output $24 \mathrm{~V}, 0.5 \mathrm{~A}$
KL5151-0050	incremental encoder 2×32 bit A, B-track
KL6001-0020	standard format 5 bytes of user data
KL6011-0020	standard format 5 bytes of user data
KL6021-0020	standard format 5 bytes of user data (rest default)
KL6021-0021	standard format 5 bytes of user data (7 bits, even, 1 stop bit, 9,600 baud)
KL6201-0010	preset to 22 bytes K-bus interface (2 K-bus cycles 31 AS-Interface slaves)
KL6201-0011	preset to 38 bytes K-bus interface (4 K-bus cycles 62 AS-Interface slaves)
KL6211-0011	preset to 38 bytes K-bus interface (4 K-bus cycles 62 AS-Interface slaves)
KL6904-0001	TwinSAFE Logic Bus Terminal, pre-configured ex factory to 15 TwinSAFE connections
System terminals	
KL9210-0020	with 2 A fuse (slow-blow) and modified label

Accessories Bus Terminals

Connectors

Lightbus
Z1000
Z1010
Z1020

standard connector for $1,000 \mu \mathrm{~m}$ plastic fibre
standard connector for $200 \mu \mathrm{~m}$ PCS fibre
coupling for Z1000

PROFIBUS		Pict.
ZB3100	9-pin D-sub connector for PROFIBUS (12 Mbaud) with switchable termination resistor	A
ZB3101	9-pin D-sub connector for PROFIBUS (12 Mbaud) with switchable termination resistor and programming interface	
ZB3102	9-pin D-sub connector for PROFIBUS (12 Mbaud) $\left(180^{\circ}\right.$ orientation) with switchable termination resistor	C
ZS1031-3000	9-pin D-sub connector for PROFIBUS (12 Mbaud) with integrated termination resistor	
ZS1031-3500	fibre optic connector for Bus Coupler BK3500 and BK3520	

CANopen/DeviceNet	
ZS1051-3000	9-pin D-sub connector for CANopen with integrated termination resistor
ZS1052-3000	5 -pin open style connector for CANopen/DeviceNet with integrated termination resistor
ZS1052-5150	CAN diagnostic interface
Technical data	ZS1031-3000 ZS1052-3000
Fieldbus	PROFIBUS CANopen/DeviceNet
Bus plug	D-sub, 9-pin open style connector, 5 -pin
Data transfer rates	up to 12 Mbaud up to 1 Mbaud (CANopen) or 500 kbaud (DeviceNet)
Cable outgoing	downwards (where Bus Terminals are assembled horizontally)
Cable diameter	4.5... 8 mm
Wire cross section	0.34 mm wire $\quad 0.2 \ldots 0.5 \mathrm{~mm}$ litz wire or wire
Connection method	screw type terminal
Wire	PROFIBUS, type A, ZB3200 e.g. CANopen cable ZB5100 or DeviceNet cable ZB5200
Termination resistor	network with $2 \times 390 \Omega, 1 \times 220 \Omega$
Protection class	IP 40
Temperature range	$-20 \ldots+75^{\circ} \mathrm{C}$
Dimensions (x W $\times \mathrm{H}$)	approx. ($65 \times 50 \times 16$) mm
Packaging	folding box with instructions
SERCOS interface	
Z1003	FSMA plug with knurled nut for $1,000 \mu \mathrm{~m}$ plastic fibre
Z1100	plastic fibre optic, single core, $1,000 \mu \mathrm{~m}, 2.2 \mathrm{~mm}$
Z1101	plastic fibre optic, single core, $1,000 \mu \mathrm{~m}$ with protective PU cladding and Kevlar strain relief, drag-chain suitable

Interbus	
Z1003	FSMA plug with knurled nut for $1,000 \mu$ m plastic fibre
ZB4100	9-pin D-sub socket for incoming remote bus
ZB4101	9-pin D-sub plug for outgoing remote bus

Ethernet/EtherCAT		Pict.
ZS1090-0003	RJ45 plug EtherCAT/Ethernet, IP 20, 4-pin, field assembly, AWG22-24, PU =10	D
ZS1090-0005	EtherCAT/Ethernet, IP 20, 8-pin, supports Gbit, field assembly, AWG22-26, PU =10	E

RS232/RS485

ZB3180
9-pin D-sub connector for CX8080 (RS232/RS485) with switchable termination resistor

Cables for K-bus extension

Ordering information		ribbon cable for bus connection between two power terminals KL8001, length 0.03 m, included in scope of supply of KL8001
ZK1010-8080-3003	ribbon cable for bus connection between two power terminals KL8001 for reversing contactor connection, length 0.05 m	
ZK1010-8080-3005	ribbon cable for bus connection between the KL9060 and the KL8001, length 0.1 m, included in scope of supply of KL9060	
ZK1010-8080-3010	Plug for exposed bus connection of the KL8001, included in scope of supply of KL9060	
ZS1010-1610	K-bus extension cable, assembled at both ends with RJ45 plug, double-shielded, red, length 0.2 m	
ZK1090-0101-1002	K-bus extension cable, assembled at both ends with RJ45 plug, double-shielded, red, length 0.5 m	
ZK1090-0101-1005	K-bus extension cable, assembled at both ends with RJ45 plug, double-shielded, red, length 1 m	
ZK1090-0101-1010	K-bus extension cable, assembled at both ends with RJ45 plug, double-shielded, red, length 2 m	
ZK1090-0101-1020	K-bus extension cable, assembled at both ends with RJ45 plug, double-shielded, red, length 3 m	
ZK1090-0101-1030	K-bus extension cable, assembled at both ends with RJ45 plug, double-shielded, red, length 5 m	
ZK1090-0101-1050		

Cables

Lightbus	
Z1100	plastic fibre optic, single core, $1,000 \mu \mathrm{~m}, 2.2 \mathrm{~mm}$
Z1101	plastic fibre optic, single core, $1,000 \mu \mathrm{~m}$ with protective PU cladding and Kevlar strain relief, drag-chain suitable
PROFIBUS	PROFIBUS cable 12 Mbaud $1 \times 2 \times 0.64 \mathrm{~mm}^{2}$
ZB3200	plastic fibre optic, single core, $1,000 \mu \mathrm{~m}, 2.2 \mathrm{~mm}$
Z1100	plastic fibre optic, single core, $1,000 \mu \mathrm{~m}$ with protective PU cladding and Kevlar strain relief, drag-chain suitable
Z1101	
Interbus	Interbus remote bus cable, certified $3 \times 2 \times 0.22 \mathrm{~mm}{ }^{2}$
ZB4200	Interbus plastic fibre optic, 2 -core, $1,000 \mu \mathrm{~m}$
Z1120	Interbus plastic fibre optic, 2 -core, $1,000 \mu \mathrm{~m}$ with protective PU cladding
Z1121	

Accessories

CANopen	
ZB5100	CAN cable, 4-core, fixed laying $2 \times 2 \times 0.25 \mathrm{~mm}^{2}$
DeviceNet	
ZB5200	DeviceNet cable, 4-core with shield, fixed laying $2 \times 2 / 22$ AWG
Ethernet/EtherCAT	Industrial Ethernet/EtherCAT cable, fixed installation, CAT 5e, 4 wires
ZB9010	Industrial Ethernet/EtherCAT cable, drag-chain suitable, CAT 5e, 4 wires
ZB9020	

Patch cables

Ordering information	for pre-assembled EtherCAT/Ethernet patch cables depending on cable lengths					F
ZK1090-9191-0001	0.17 m	ZK1090-9191-0030	3.0 m	ZK1090-9191-0200	20.0 m	
ZK1090-9191-0002	0.26 m	ZK1090-9191-0050	5.0 m	ZK1090-9191-0250	25.0 m	
ZK1090-9191-0005	0.5 m	ZK1090-9191-0055	5.5 m	ZK1090-9191-0300	30.0 m	
ZK1090-9191-0010	1.0 m	ZK1090-9191-0060	6.0 m	ZK1090-9191-0350	35.0 m	
ZK1090-9191-0012	1.25 m	ZK1090-9191-0070	7.0 m	ZK1090-9191-0400	40.0 m	
ZK1090-9191-0015	1.5 m	ZK1090-9191-0080	8.0 m	ZK1090-9191-0450	45.0 m	
ZK1090-9191-0017	1.75 m	ZK1090-9191-0090	9.0 m	ZK1090-9191-0500	50.0 m	
ZK1090-9191-0020	2.0 m	ZK1090-9191-0100	10.0 m			
ZK1090-9191-0025	2.5 m	ZK1090-9191-0150	15.0 m			
Fur further information s	446					

Signal cables

Ordering information	
ZK8500-8282-7030	signal cable for manual operating modules of the KL85xx series, 20 $\times 0.14 \mathrm{~mm}^{2}$, shielded, assembled at both ends with 20-pin plug, for terminals with ribbon cable connection, length 3 m
ZK8500-8282-7040	signal cable for manual operating modules of the KL85xx series, 20 $\times 0.14 \mathrm{~mm}^{2}$, shielded, assembled at both ends with 20-pin plug, for terminals with ribbon cable connection, length 4 m
ZK8500-8282-7050	signal cable for manual operating modules of the KL85xx series, $20 \times 0.14 \mathrm{~mm}^{2}$, shielded, assembled at both ends with 20-pin plug, for terminals with ribbon cable connection, length 5 m

Connectors for KS Bus Terminals, ES EtherCAT Terminals

Ordering information	
ZS2010	10 connectors for KS and ES series, spare part (KS/ES terminals are supplied with connector.)

Connectors for KM and EM modules

Ordering information

connector for KM/EM module, 1-pin, without LED; spare part (KM/EM terminals are supplied with connector.)
connector for KM/EM module, 1-pin, with LED; spare part (KM/EM terminals are supplied with connector.)
ZS2001-0004
connector for KM/EM module, 3-pin, with LED; spare part (KM/EM terminals are supplied with connector.)

Relays

Assembly aids

Bus system housings

The BG1558 and BG1559 housings are especially suitable for the construction of compact I/O stations with a higher protection class (IP 65).
The housings are supplied with mounting rails. If desired, the housings can be supplied fully fitted with Bus Couplers, Bus Terminals, flanges and PG threaded fittings. Further sizes are available on request.

Ordering information		Pict.
BG1558	bus system housing $400 \mathrm{~mm} \times 200 \mathrm{~mm} \times 120 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$ with mounting rails and holes	H
BG1559	bousing $600 \mathrm{~mm} \times 200 \mathrm{~mm} \times 120 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$ with mounting rails and holes	

Marking material

The Busterminals can be individually labelled with standard contact signs. The marking material is not included in the delivery.
Further versions www.beckhoff.com/labelling

Ordering information	Contact labels, unprinted
BZ2000	100 unprinted contact labels, white
BZ2002	100 unprinted contact labels, yellow
BZ2005	100 unprinted contact labels, red
BZ2006	100 unprinted contact labels, blue
BZ2007	100 unprinted contact labels, orange
BZ2008	100 unprinted contact labels, light green
BZ3000	180 equipment identification labels $12 \times 7 \mathrm{~mm}$ for Bus Terminals with removable identification section, blank

[^4]
Accessories

Ordering information	Contact labels, printed
BZ1100	100 contact labels, printed with: 0 V , blue
BZ1102	100 contact labels, printed with: - , blue
BZ1104	100 contact labels, printed with: 24 V , red
BZ1106	100 contact labels, printed with: + , red
BZ1107	100 contact labels, printed with: + , white
BZ1108	100 contact labels, printed with: PE , light green
BZ1300	100 contact labels, ten of each printed with: $0 \ldots 7,20$ unprinted, white
BZ1400	100 contact labels, two of each printed with: $0001 \ldots 4849$, white
BZ3010	180 equipment identification labels $12 \times 7 \mathrm{~mm}$ for Bus Terminals with removable identification section, printed (printed according to customer specification [in Excel file])
Ordering information	Push-in strips
BZ5100	push-in strips for labels, A4 sheet, 160 pieces, pre-punched, packing unit = 10

Slide-in label cover, transparent

The slide-in label covers BZ3200 enable clear labelling of the individual channels or text-based functional description of the EtherCAT Terminals. The labels are inserted in the designated slots. For connecting the individual channels the label cover can be tilted upwards.

Ordering information	
BZ3200	insertable label cover, transparent, pluggable, $11.5 \mathrm{~mm} \times 104.5 \mathrm{~mm}$, packing unit $=50$
BZ5100	push-in strips for labels, A4 sheet, 160 pieces, pre-punched, packing unit $=10$

Coding pins and sockets for KS and ES terminals

The coding pins and sockets for KS/ES terminals with pluggable wiring level enable coding between terminal and plug in order to prevent incorrect plug insertion.

Ordering information		K
ZS2010-0010	The set contains 100 sockets and 100 pins.	

USB cable for KS2000

The KS2000 cable establishes a connection between the Bus Couplers or Bus Terminal Controllers and the PC. The USB cable features electrical isolation. Status LEDs indicate whether data are sent or received. On the connected PC the USB cable behaves like a COM port and can therefore be used for all Beckhoff tools using serial communication.

Ordering information	
KS2000-Z2-USB	connection cable for KS2000 or TwinCAT for serial conversion from USB for Bus Couplers or Bus Terminal Controllers of the BK, BC or LC series, length 3 m

Configuration software KS2000

The KS2000 can be used for parametering modules, local diagnostics, forcing data, monitorig values, updating firmware and programming Beckhoff mini PLCs via TwinCAT. The connection between the fieldbus components and the PC is established via the serial or USB connection cable provided, or via the network and TCP/IP. The KS2000 configuration software for Windows NT/2000/XP/Vista or Windows 7 operating systems has a friendly user interface, making work comfortable and convenient.

Ordering information

configuration software for project design, commissioning and parameterisation of Beckhoff Fieldbus Box modules and Bus Terminals

Demokit

The TC9910-B11x EtherCAT demokit offers a quick introduction into EtherCAT communication. It includes EtherCAT Terminals and a Coupler for testing simple I/O functions. The enclosed CD contains a step-by-step guide and a full version of TwinCAT 2 as programming environment for
the Beckhoff EtherCAT master. The demokit consists of: EtherCAT slaves of any type can be tested with this fieldproven EtherCAT master. It also includes a comprehensive help collection that facilitates familiarisation with Beckhoff ADS communication and programming according to IEC 61131-3.

- EK1100 EtherCAT Coupler
- 2 digital input terminals 24 V DC
- 2 digital output terminals 24 V DC
- Beckhoff product folder
- Beckhoff TwinCAT CD
- "TwinCAT Quickstart" documentation
- documentation describing the EK1100
- a 25 cm section of 35 mm mounting rail for fitting the terminal system
- TwinCAT 2 PLC license (only TC9910-B110)
- EL9011 end cap
- Ethernet cable

Ordering information	
TC9910-B110	EtherCAT demokit, with TwinCAT 2 PLC license
TC9910-B111	EtherCAT demokit, without TwinCAT 2 PLC license
TC9910-B112	EtherCAT demokit, without TwinCAT 2 PLC license (1 instead of 2 digital input terminals)

Accessories radio technology

Omni-directional antenna 4 dBi

Directional antenna 9 dBi

Technical data	ZS6200-0400
Frequency range	$2,400 \ldots 2,485 \mathrm{MHz}$
Gain	4 dBi
$\mathbf{3 ~ d B}$ beamwidth, horizontal	360°
$\mathbf{3 ~ d B}$ beamwidth, vertical	70°
Termination	SMA socket
Dimensions	height: 45 mm, diameter: 110 mm
Operating temperature	$-40 \ldots+80^{\circ} \mathrm{C}$
Mounting	ceiling clip
Matching cables	ZK6000-0102-0020/-0040 (cable not included in the scope of supply of the antenna, only one cable per antenna possible)

Technical data	ZS6100-0900
Frequency range	$2,400 \ldots 2,485 \mathrm{MHz}$
Gain	9 dBi
$\mathbf{3 ~ d B}$ beamwidth, horizontal	65°
$\mathbf{3 ~ d B}$ beamwidth, vertical	65°
Termination	SMA socket
Dimensions	$93 \mathrm{~mm} \times 93 \mathrm{~mm} \times 25 \mathrm{~mm}(\mathrm{H} \mathrm{x} \mathrm{W} \mathrm{x} \mathrm{D)}$
Operating temperature	$-40 \ldots+80^{\circ} \mathrm{C}$
Mounting	bracket mounting
Matching cables	ZK6000-0102-0020/-0040 (cable not included in the scope of supply of the antenna, only one cable per antenna possible)

Rod antenna 4 dBi

Technical data	ZS6201-0410
Frequency range	$2,400 \ldots 2,485 \mathrm{MHz}$
Gain	4 dBi
3 dB beamwidth, horizontal	360°
3 dB beamwidth, vertical	70°
Termination	reverse SMA socket
Dimensions	height: 202 mm , base diameter: 35 mm
Operating temperature	$-40 \ldots+80^{\circ} \mathrm{C}$
Mounting	M 14 connecting nut
Matching cables	1 m cable with reverse SMA socket (included in the scope of supply of the antenna, extension not possible)

Rod antenna 5 dBi

Directional antenna 18 dBi

Technical data	ZS6201-0500
Frequency range	$2,400 \ldots 2,485 \mathrm{MHz}$
Gain	5 dBi
3 dB beamwidth, horizontal	360°
3 dB beamwidth, vertical	70°
Termination	reverse SMA socket
Dimensions	height: 195 mm, base diameter: 12 mm
Operating temperature	$-40 \ldots+80^{\circ} \mathrm{C}$
Mounting	direct connection, with angle joint
Matching cables	direct connection, reverse SMA socket (antenna cannot be combined with a cable)

Technical data	ZS6100-1800
Frequency range	$2,400 \ldots 2,485 \mathrm{MHz}$
Gain	18 dBi
3 dB beamwidth, horizontal	20°
3 dB beamwidth, vertical	20°
Termination	SMA socket
Dimensions	$360 \mathrm{~mm} \times 360 \mathrm{~mm} \times 30 \mathrm{~mm}$ $(\mathrm{H} \mathrm{xW} \mathrm{x} \mathrm{D)}$
Operating temperature	$-40 \ldots+80^{\circ} \mathrm{C}$
Mounting	bracket mounting
Matching cables	ZK6000-0102-0020/-0040 (cable not included in the scope of supply of the antenna, only one cable per antenna possible)

Antenna cables

Ordering information
ZK6000-0102-0020
coaxial cable, 50Ω impedance, with attached connectors (SMA plug and reverse SMA socket), black, 200 cm
ZK6000-0102-0040 coaxial cable, 50Ω impedance, with attached connectors (SMA plug and reverse SMA socket), black, 400 cm

Fieldbus Box

The compact IP 67 modules

Fieldbus Box

The watertight solution

700
703
704
706

Product overview
System description
Features
Technical data

718	Signal types PLC Box
722	Digital combi IL230x-Cxxx

$724 \quad$ Signal types Compact Box

728 Digital input IP1 xxx-Bxxx
730 Digital output IP2xxx-Bxxx
734 Digital combi IP23xx-Bxxx, IP24xx-Bxxx

Analog input IP3xxx-Bxxx Analog output IP4xxx-Bxxx Special functions IP5xxx-Bxxx, IP6xxx-Bxxx

710 PROFIBUS IPxxxx-B31x IL230x-B31x, IL230x-C31x
Interbus IPxxxx-B400,
IL230x-B400

726	Signal types Extension Box
728	Digital input IE1 xxx Digital output IE2xxx
730	Digital combi IE23xx, IE24xx
734	Analog input IE3xxx Analog output IE4xxx Special functions IE5xxx, IE6xxx
738	
740	
742	
746	

712 CANopen IPxxxx-B51x IL230x-B51x
DeviceNet IPxxxx-B52x,
IL230x-B52x
714
Modbus IPxxxx-B730, IL230x-B730
RS485/RS232 IPxxxx-B8x0,
IL230x-B8x0, IL230x-C810
716 Ethernet IL230x-B90x,
IL230x-C900
PROFINET IL230x-B903
EtherNet/IP IL230x-B905

718
Signal types Coupler Box
Digital input EPI1 xxx Digital output EPI2xxx Digital combi EPI23xx Analog input EPI3xxx Analog output EPI4xxx

761	Software
761	Configuration software KS2000
944	Programming system TwinCAT

746	IO-Link box
	(zinc die-cast housing)
748	Digital input ERI1 xxx
750	Digital output ERI2xxx
752	Digital combi ERI23xx
754	Analog input ERI3xxx
755	Analog output ERI4xxx

756 Accessories

Fieldbus system accessories
Cable sets and connectors
762 Fieldbus Modules

EtherCAT Fieldbus Module, 12/32-channel thermocouple FM33xx-B110

764 PROFIBUS Fieldbus Module, 12/32-channel thermocouple FM33xx-B310

Product overview Fieldbus Box

Fieldbus Box	Compact Box	Coupler Box	PLC Box
Fieldbus	Fieldbus Box without IP-Link interface	Fieldbus Box with IP-Link interface	Controller IEC 61131-3 with IP-Link interface
EthercATr		IL230x-B110 709	
LIGHTBUS	IPxxxx-B200 709	IL230x-B200 709	
$\begin{aligned} & \text { PRRIOFII }{ }^{\circ} \\ & \text { TBTUST }^{\circ} \end{aligned}$	IPxxxx-B310 710 IPxxxx-B318 710 with integrated tee-connector	IL230x-B310710 IL230x-B318 with integrated tee-connector	$\begin{array}{\|l\|l\|l\|} \hline \text { IL230x-C310 } & 711 & \begin{array}{l} \text { IL230x-C318 } \\ \text { with integrated tee-connector } \end{array} \\ \hline \end{array}$
	IPxxxx-B400 711	IL230x-B400 711	
caNopen	IPxxxx-B510 712 IPxxxx-B518 with integrated tee-connector 712	IL230x-B510 712 IL230x-B518 712 with integrated tee-connector	
DeviceNet	IPxxxx-B520 713 IPxxxx-B528 with integrated tee-connector 713	IL230x-B520 713 IL230x-B528 with integrated tee-connector	
Modbus	IPxxxx-B730 714	IL230x-B730 714	
RS485	IPxxxx-B800 714	IL230x-B800 715	
RS232	IPxxxx-B810 715	IL230x-B810 715	IL230x-C810 715
Ethernet TCP/IP		IL230x-B900 716 IL230x-B901 716	IL230x-C900 716
$\begin{aligned} & \text { PRROIFI }^{\circ} \\ & \text { TNETIT }^{\circ} \end{aligned}$		IL230x-B903 717	
EtherNet/IP		IL230x-B905 717	

Fieldbus Box | Compact Box and Extension Box: Digital I/O

Input		8 mm		M8		M12	
24 V DC	8-channel filter 3.0 ms	IP1000-Bxxx, IE1000	728	IP1001-Bxxx, IE1001	729	IP1002-Bxxx, IE1002	729
	8 -channel filter 0.2 ms	IP1010-Bxxx, IE1010	728	IP1011-Bxxx, IE1011	729	IP1012-Bxxx, IE1012	729
Counter	2-channel					IP1502-Bxxx, IE1502	729

up/down counter 24 V DC, 100 kHz

Output		8 mm		M8		M12	
24 V DC	8 -channel $\operatorname{lmax}=0,5 \mathrm{~A}$	IP2000-Bxxx, IE2000	730	IP2001-Bxxx, IE2001	730	IP2002-Bxxx, IE2002	731
	8 -channel $\operatorname{lmax}=2 \mathrm{~A}, \sum 4 \mathrm{~A}$	IP2020-Bxxx, IE2020	731	IP2021-Bxxx, IE2021	731	IP2022-Bxxx, IE2022	731
	8 -channel $\operatorname{lmax}=2 \mathrm{~A}, \sum 12 \mathrm{~A}$	IP2040-Bxxx, IE2040	732	IP2041-Bxxx, IE2041	732	IP2042-Bxxx, IE2042	732
	16-channel					IE2808	733
	$l_{\text {max }}=0.5 \mathrm{~A}, \sum 4 \mathrm{~A}, \mathrm{D}$-sub socket					IE2808-0001	733
PWM	2-channel PWM, 24V DC, $\operatorname{lmax}=2.5 \mathrm{~A}$					IP2512-Bxxx, IE2512	733

Fieldbus Box | Compact Box, Coupler Box, PLC Box and Extension Box: Digital I/0

Combi		8 mm		M8		M12	
24 V DC	8-channel	IL2300-Bxxx	720	IL2301-Bxxx	720	IL2302-Bxxx	720
	4 input + 4 output,	IL2300-Cxxx	722	IL2301-Cxxx	722	IL2302-Cxxx	722
	filter $3.0 \mathrm{~ms}, \operatorname{lmax}=0.5 \mathrm{~A}$	IP2300-Bxxx, IE2300	734	IP2301-Bxxx, IE2301	735	IP2302-Bxxx, IE2302	735
	8-channel	IP2310-Bxxx	734	IP2311-Bxxx	735	IP2312-Bxxx	735
	4 input +4 output, filter $0.2 \mathrm{~ms}, \operatorname{lmax}=0.5 \mathrm{~A}$	IE2310	734	IE2311	735	IE2312	735
	8 -channel 4 input +4 output,	IP2320-Bxxx	736	IP2321-Bxxx	736	IP2322-Bxxx	737
	filter $3.0 \mathrm{~ms}, \operatorname{lmax}=2 \mathrm{~A}, \sum 4 \mathrm{~A}$	IE2320	736	IE2321	736	IE2322	737
	8 -channel 4 input +4 output,	IP2330-Bxxx	736	IP2331-Bxxx	736	IP2332-Bxxx	737
	filter $0.2 \mathrm{~ms}, \operatorname{lmax}=2 \mathrm{~A}, \sum 4 \mathrm{~A}$	IE2330	736	IE2331	736	IE2332	737
	16-channel	IP2400-Bxxx	737	IP2401-Bxxx	737		
	combi inputoutput, filter 3.0 ms , lmax $=0.5 \mathrm{~A}$	IE2400	737	IE2401	737		
	16-channel combi input/output, filter 3.0 ms , $l_{\text {max }}=0.5 \mathrm{~A}$, IP 20 connector	IE2403	735				

Fieldbus Box | Compact Box and Extension Box: Analog I/O

Input		M12	
$\pm 10 \mathrm{~V}$	4-channel differential inputs, 16 bit	IP3102-Bxxx, IE3102	738
0/4... 20 mA	4-channel differential inputs, 16 bit	IP3112-Bxxx, IE3112	739
Resistance thermometer	4-channel resistance thermometer (RTD), PT100, PT200, PT500, PT1000, Ni100, 16 bit	IP3202-Bxxx, IE3202	739
Thermocouple/mV	4-channel thermocouple, type J, K, L, , , , E, , , R, S, , , U, 16 bit	IP3312-Bxxx, IE3312	739
Output		M12	
$\pm 10 \mathrm{~V}$	4-channel 16 bit	IP4132-Bxxx, IE4132	740
0/4... 20 mA	4-channel 16 bit	IP4112-Bxxx, IE4112	740

Fieldbus Box | Compact Box and Extension Box: Special functions

Function		M12	M23	
Position measurement	1-channel SSl encoder interface		IP5009-Bxxx, IE5009	742
	1-channel incremental encoder interface, 1 MHz		IP5109-Bxxx, IE5109	743
	1-channel SinCos encoder interface		IP5209-Bxxx (1 $\mathrm{V}_{\text {po }}$)	743
			IP5209-Bxxx-1000 (11 HAPr)	
Communication	1-channel serial interface, R2232	IP6002-Bxxx, IE6002		
	1-channel serial interface, $0 \ldots 20 \mathrm{~mA}$ (TY)	IP6012-Bxxx, IE6012		
	1-channel serial interface, RS422/RS485	IP6022-Bxxx, IE6022		

Fieldbus Box | IO-Link box: Digital I/0

Fieldbus Box | 10-Link box: Analog I/0

Input		M12	
$\pm 10 \mathrm{~V}$,	4-channel parameterisable, differential input, 16 bit	EPI3174-0002	754
0/4... 20 mA		ERI3174-0002	754
Output		M12	
$\pm 10 \mathrm{~V}$,	4-channel	EPI4374-0002	755
0/4... 20 mA	2 input +2 output, parameterisable, 16 bit	ERI4374-0002	755

EPIxxxx: industrial housing in IP 67, ERIxxxx: zinc die-cast housing in IP 67

The Fieldbus Box

The Beckhoff Fieldbus Box system is the culmination of the fieldbus concept:

Robust

Robust construction allows fieldbus modules to be fitted directly to machines. Control cabinets and terminal boxes are now no longer required.

Sealed

The modules meet the protection class IP 65, IP 66 and IP 67, are fully casted and thus ideally prepared for use in wet, dirty and dusty working environments.

Small

The modules are extremely small and are thus suitable for use in applications where there is very little space available. The low weight of the Fieldbus Box modules makes them useful in applications where the I/O interface is in motion (e.g. on a robot arm).

Open

All the most important fieldbus systems are supported. This substantially frees electrical design from the particular bus system in use. Fast, flexible reactions to customers' requirements are possible. The Fieldbus Box modules are, of course, certified by the respective fieldbus user organisations, and can be combined with Beckhoff Bus Terminals and with devices from third-party manufacturers.

Modular

Conventional fieldbuses such as PROFIBUS or CANopen are connected via Coupler Box modules. These are modularly extendable through cost-effective extension modules.

Quickly wired

The wiring of the fieldbus and of signals is significantly simplified through the use of pre-assembled cables. Wiring errors are minimised and the system setup is finished quickly.

Flexible

In addition to the pre-assembled cables, field wireable connectors and cables are also available for maximum flexibility.

Economical

Combined I/O modules and fine signal granularity lead to low system costs you only have to buy what you really need.

Intelligent

Even the standard modules are intelligent fieldbus devices - with self-diagnosis and versatile functions. The Fieldbus Box is furthermore available as a small local controller - the PLC Box: programmable in all five languages in accordance with IEC 61131-3, with floating point arithmetic and with sufficient performance and memory for the majority of decentralised control and regulation tasks.

Complete

The wide variety of signal types allows the connection of almost any kind of sensor. The communication modules enable decentralised connection of, e.g., label printers, identification systems or special equipment. The Fieldbus Box range also includes encoder interfaces for displacement and angle measurement.

Fitting

Sensors and actuators are connected through 8 mm diameter snap type or through screw type connectors (M8 or M12). The snap type connectors lock in place positively, forming a vibration-proof connection, while the screw type connectors offer the advantage of high resistance to being pulled out.

Compatible

The Fieldbus Box devices behave very much like the Beckhoff Bus Terminals - this means that the ideal distributed peripheral device can be used, whatever the particular application.

IO-Link

The Fieldbus Box modules with IO-Link interface complement the connection possibilities at the sensor/actuator level. This way, IO-Link and standard sensors can be acquired with one IO-Link master.

Fieldbus Box features

IP-Link interface on the Coupler Box and PLC Box for the connection of extension modules

Watertight and dust-proof, due to protection class
IP 65/66/67 (fully potted)

Signal status display

Connection of sensors/ actuators via connector:

- M8, screw type
- M12, screw type
- 8 mm, snap type

Mounting holes

Technical data

Compact Box, Coupler Box, PLC Box

Fieldbus Box

Fieldbus Box with integrated tee-connector

Technical data	Fieldbus Box	Fieldbus Box with integrated tee-connector
Dimensions (W \times H \times D)	$30 \mathrm{~mm} \times 175 \mathrm{~mm} \times 26.5 \mathrm{~mm}$	$30 \mathrm{~mm} \times 210 \mathrm{~mm} \times 26.5 \mathrm{~mm}$
Weight	depending on device	
Material	PA6 (polyamide)	
Installation	2 fixing holes 3 mm diameter for M3	
Operating $/$ storage temperature	$0 \ldots+55^{\circ} \mathrm{C} /-25 \ldots+85^{\circ} \mathrm{C}$	
Vibration resistance	conforms to EN $60068-2-6$	
Shock resistance	conforms to EN $60068-2-27$	
EMC immunity/emission	conforms to EN 61000-6-2/EN 61000-6-4	
Protect. class/installation pos.	IP 65/66/67 (conforms to EN 60529)/variable	
Approval	UL E172151, CE	
Power feed through	Imax $=4 \mathrm{~A}$	

Technical data

Extension Box, IO-Link box

Technical data	Extension Box	IO-Link box (8x M8, $4 \times \mathrm{M} 12$)	IO-Link box ($16 \times \mathrm{M} 8$, $8 \times \mathrm{M} 12$)
Dimensions (W x H x D	$30 \mathrm{~mm} \times 126 \mathrm{~mm} \times 26.5 \mathrm{~mm}$	$30 \mathrm{~mm} \times 126 \mathrm{~mm} \times 26.5 \mathrm{~mm}$	$60 \mathrm{~mm} \times 126 \mathrm{~mm} \times 26.5 \mathrm{~mm}$
Weight	depending on device (typ. 150 g)	depending on device (typ. 150 g)	depending on device (typ. 310 g)
Material	PA6 (polyamide)	PA6 (polyamide) for EPIxxxx or zinc die-cast for ERIxxxx	PA6 (polyamide) for EPIxxxx or zinc die-cast for ERIxxxx
Installation	2 fixing holes 3 mm diameter for M3	2 fixing holes 3 mm diameter for M3	2 fixing holes 3 mm diameter for M3; 2 fixing holes 4.5 mm diameter for M4
Operating/storage temperature	$0 \ldots+55^{\circ} \mathrm{Cl}-25 \ldots+85^{\circ} \mathrm{C}$	$-25 . .+60^{\circ} \mathrm{C} /-40 \ldots+85^{\circ} \mathrm{C}$	$-25 \ldots+60^{\circ} \mathrm{C} /-40 \ldots+85^{\circ} \mathrm{C}$
Vibration resistance	conforms to EN 60068-2-6	conforms to EN 60068-2-6: 1 g (extended range: 5 g)	conforms to EN 60068-2-6: 1 g (extended range: 5 g)
Shock resistance	conforms to EN 60068-2-27	conforms to EN 60068-2-27: 15 g , 11 ms (extended range: $35 \mathrm{~g}, 11 \mathrm{~ms}$); 1000 shocks per direction, 3 axes	conforms to EN 60068-2-27: 15 g , 11 ms (extended range: $35 \mathrm{~g}, 11 \mathrm{~ms}$); 1000 shocks per direction, 3 axes
EMC immunity/emission	conforms to EN 61000-6-2/EN 61000-6-4		
Protect. class/installation pos.	IP 65/66/67 (conforms to EN 60529)/variable		
Approval	UL E172151, CE	CE, UL in preparation	CE, UL in preparation
Power feed through	$l_{\text {max }}=4 \mathrm{~A}$	-	-

Fieldbus systems

The Beckhoff Fieldbus Box modules are available for various fieldbuses. The Compact Box serves as a fieldbus station - without expansion options - with a wide variety of I/O functions.

The Coupler Box and PLC Box can be extended by the Extension Box modules. Communication takes place via IP-Link. IP-Link is a fibre optic communication link with a transmission rate of $2 \mathrm{Mbits} / \mathrm{s}$ which is capable of transmitting 1,000 items of binary I/O data in approx. 1 ms , rapidly and securely. Smaller configurations are corre-
spondingly faster. Because of the high usable data rate, the IP-Link coupling does not reduce the performance of the fieldbus at all.

The Coupler Box gathers the I/O data and corresponds to the Bus Coupler from the Beckhoff Bus Terminal system.

The PLC Box is an intelligent fieldbus module for local pre-processing of the I/O signals and thus corresponds to the Bus Terminal Controller in the Bus Terminal system. This is a way of removing parts of the application out of the central control system
to relieve the CPU and the fieldbus. Decentralised counting, control or switching are typical applications for the Fieldbus Box with integrated small controller. The reaction times are independent of the bus communication and of the supervising controller. In the event of a bus or controller failure, maintenance of function (e.g. bringing the process to a safe state in an orderly manner) is possible.

For further information on the individual fieldbuses see page 262

Beckhoff Минск т.80447584780 Viber email minsk17@tut.by www.fotorele.net www.tiristor.by радиодетали, электронные компоненты tel.+375 297584780 мтс

каталог, описание, технические, характеристики, datasheet, параметры, маркировка, габариты, фото, даташит, Beckhoff

где и как купить в Минске?

Сделать заявку или запрос можно по телефону факсу или по электронной почте Просим Вас указывать в заявке:

- название предприятия, факс, контактный телефон, контактное лицо;
- полное наименование и количество товара;
- возможность замены или аналоги;

Каталог Beckhoff

[^0]: Realisation possibilities for position control loops

[^1]: 1 For availability status see Beckhoff website at: www.beckhoff.com

[^2]: Special modules
 Distinguishing features

[^3]: ${ }^{(1)}$ via modular fieldbus interface, ${ }^{(2)}$ via hardware, ${ }^{(3)}$ via software library

[^4]: Further marking material and pictures see next page

