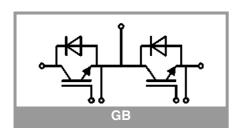

Trench IGBT Modules

SKM300GB126D


Features

- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to $6 \times I_C$
- UL recognized, file no. E63532

- · Electronic welders
- · AC inverter drives
- UPS

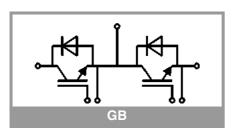
Characteristics						
Symbol	Conditions		min.	typ.	max.	Unit
IGBT						•
V _{CE(sat)}	I _C = 200 A	T _j = 25 °C		1.70	2.10	V
	V _{GE} = 15 V chiplevel	T _j = 125 °C		2.00	2.46	V
V_{CE0}	CE0 chiplevel	T _j = 25 °C		1	1.2	V
	Chipievei	T _j = 125 °C		0.9	1.1	V
r _{CE}	$V_{GE} = 15 \text{ V}$	T _j = 25 °C		3.5	4.5	mΩ
	chiplevel	T _j = 125 °C		5.5	6.8	mΩ
$V_{\text{GE(th)}}$	$V_{GE}=V_{CE}$, $I_{C}=8$ m	A	5	5.8	6.5	V
I _{CES}	V _{GE} = 0 V	T _j = 25 °C			2.7	mA
	V _{CE} = 1200 V	T _j = 125 °C				mA
C _{ies}	V 05.V	f = 1 MHz		14.4		nF
Coes	$V_{CE} = 25 \text{ V}$ $V_{GE} = 0 \text{ V}$	f = 1 MHz		0.75		nF
C _{res}	I GE - 5 V	f = 1 MHz		0.65		nF
Q_{G}	V _{GE} = - 8 V+ 20 V	V		1800		nC
R _{Gint}	T _j = 25 °C			3.8		Ω
t _{d(on)}	V _{CC} = 600 V	T _j = 125 °C		280		ns
t _r	$I_C = 200 \text{ A}$ $V_{GE} = +15/-15 \text{ V}$	T _j = 125 °C		37		ns
E _{on}	$R_{G \text{ on}} = 1.5 \Omega$	T _j = 125 °C		21		mJ
t _{d(off)}	$R_{G \text{ off}} = 1.5 \Omega$	T _j = 125 °C		560		ns
t _f		T _j = 125 °C		100		ns
E _{off}		T _j = 125 °C		33		mJ
R _{th(j-c)}	per IGBT				0.12	K/W

SEMITRANS® 3

Trench IGBT Modules

SKM300GB126D

Features


- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to $6 \times I_C$
- UL recognized, file no. E63532

Typical Applications*

- Electronic welders
- · AC inverter drives
- UPS

Characte	eristics					
Symbol	Conditions		min.	typ.	max.	Unit
Inverse d	iode					
$V_F = V_{EC}$	I _F = 200 A	T _j = 25 °C		1.60	1.80	V
	V _{GE} = 0 V chiplevel	T _j = 125 °C		1.60	1.80	V
V_{F0}	chiplevel	T _j = 25 °C		1	1.1	V
	Criipievei	T _j = 125 °C		0.8	0.9	V
r _F	chiplevel	T _j = 25 °C		3	3.5	mΩ
	Criipievei	T _j = 125 °C		4	4.5	mΩ
I _{RRM}	I _F = 200 A	T _j = 125 °C		290		Α
Q _{rr}	di/dt _{off} = 6200 A/μs V _{GE} = -15 V	T _j = 125 °C		44		μС
E _{rr}	V _{CC} = 600 V	T _j = 125 °C		18		mJ
R _{th(j-c)}	per diode				0.25	K/W
Module						
L _{CE}				15		nΗ
R _{CC'+EE'}	torminal ahin	T _C = 25 °C		0.35		mΩ
	terminal-chip	T _C = 125 °C		0.5		mΩ
R _{th(c-s)}	per module	,		0.02	0.038	K/W
Ms	to heat sink M6		3		5	Nm
Mt		to terminals M6	2.5		5	Nm
						Nm
W					325	g

в Беларуси Заказ г.Минск www.tiristor.by email: minsk17@tut.by viber и тел.+375447584780

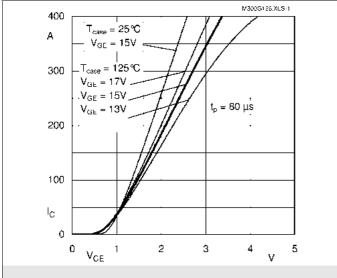


Fig. 1: Typ. output characteristic, inclusive R_{CC'+ EE'}

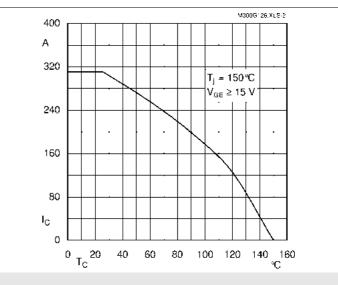


Fig. 2: Rated current vs. temperature $I_C = f(T_C)$

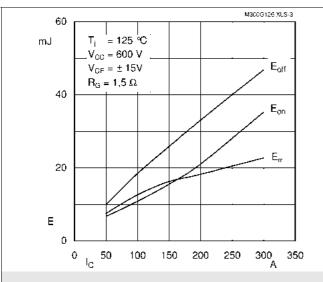


Fig. 3: Typ. turn-on /-off energy = $f(I_C)$

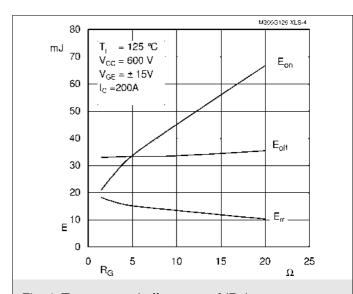


Fig. 4: Typ. turn-on /-off energy = $f(R_G)$

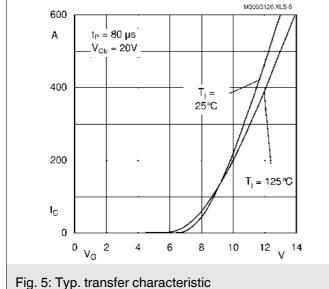


Fig. 6: Typ. gate charge characteristic

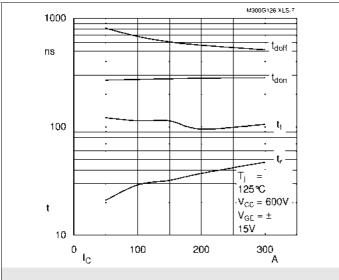


Fig. 7: Typ. switching times vs. I_C

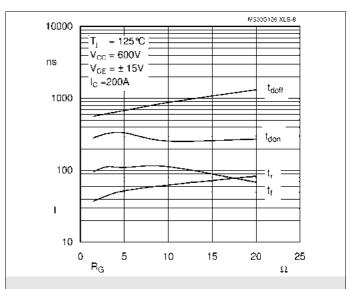


Fig. 8: Typ. switching times vs. gate resistor R_{G}

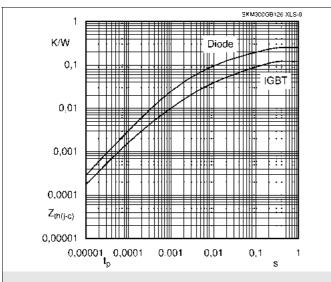


Fig. 9: Transient thermal impedance

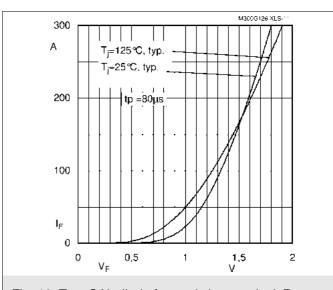


Fig. 10: Typ. CAL diode forward charact., incl. $R_{CC'+\; EE'}$

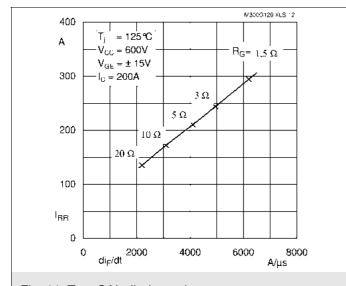


Fig. 11: Typ. CAL diode peak reverse recovery current

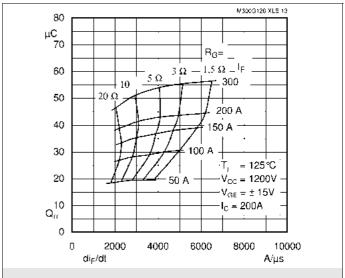
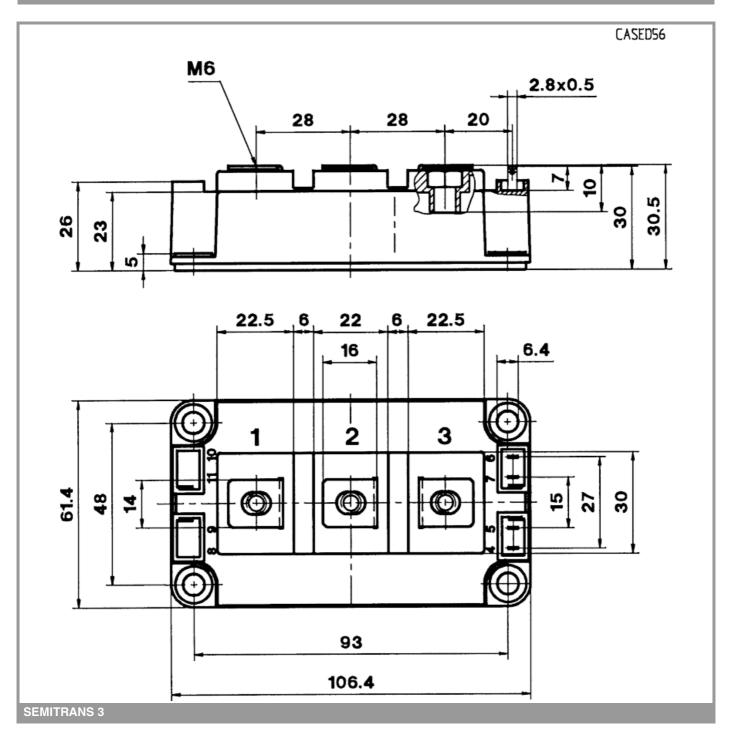
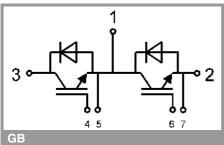




Fig. 12: Typ. CAL diode peak reverse recovery charge

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX

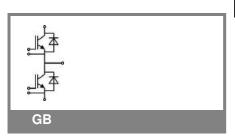
^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our staff.

SEMITRANS[®] 3

Trench IGBT Modules

SKM 300GB066D

Features


- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C

Typical Applications*

- AC inverter drives
- UPS
- Electronic welders

Remarks

- Case temperature limited to T_c = 125°C max, recommended T_{op} = -40 ... +150°C
- Product reliability results are valid for T_i ≤150°C
- Short circuit data: $t_p \le 6$ s; $V_{GE} \le 15V$; $T_j = 150^{\circ}C$; $V_{cc} \le 360V$, use of soft R_G necessary!
- Take care of over-voltage caused by stray inductances

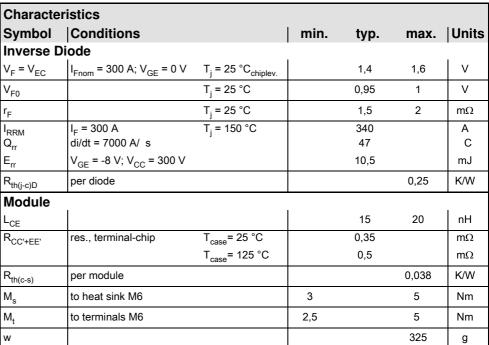
Absolute	Maximum Ratings	T _{case} =	= 25°C, unless otherwise sp	ecified
Symbol	Conditions		Values	Units
IGBT				•
V_{CES}	T _j = 25 °C		600	V
I _C	T _j = 175 °C	T _c = 25 °C	390	Α
		$T_c = 80 ^{\circ}C$	300	Α
I _{CRM}	I _{CRM} =2xI _{Cnom}		600	Α
V_{GES}			± 20	٧
t _{psc}	V_{CC} = 360 V; $V_{GE} \le 15$ V; $V_{CES} < 600$ V	T _j = 150 °C	6	s
Inverse D	Diode			
I _F	T _j = 175 °C	$T_c = 25 ^{\circ}C$	350	Α
		$T_c = 80 ^{\circ}C$	250	Α
I _{FRM}	I _{FRM} =2xI _{Fnom}		600	Α
I _{FSM}	$t_p = 10 \text{ ms; sin.}$	T _j = 175 °C	1760	Α
Module				
$I_{t(RMS)}$			500	Α
T_{vj}			- 40 + 175	°C
T _{stg}			- 40 + 125	°C
V _{isol}	AC, 1 min.		4000	V

Characteristics T _{case} =			: 25°C, ur	less oth	erwise sp	ecified
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_{C} = 4.8 \text{ mA}$		5	5,8	6,5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C		0,15	0,45	mA
V _{CE0}		T _j = 25 °C		0,9	1	V
		T _j = 150 °C		0,85	0,9	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		1,8	3	mΩ
		T _j = 150°C		2,7	3,8	$m\Omega$
V _{CE(sat)}	I _{Cnom} = 300 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,45	1,9	V
		$T_j = 150^{\circ}C_{chiplev.}$		1,7	2,1	V
C _{ies}				18,5		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		1,2		nF
C _{res}				0,55		nF
Q_G	V _{GE} = -8V+15V			2400		nC
R _{Gint}	$T_j = {^{\circ}C}$			1		Ω
t _{d(on)}				150		ns
l t _r	$R_{Gon} = 2.4 \Omega$	V _{CC} = 300V		48		ns
E _{on}		I _C = 300A		7,5		mJ
t _{d(off)}	$R_{Goff} = 2.4 \Omega$	$T_j = 150 ^{\circ}\text{C}$		540		ns
t _f		$V_{GE} = -8V/+15V$		53		ns
E _{off}				11,5		mJ
R _{th(j-c)}	per IGBT				0,15	K/W

Trench IGBT Modules

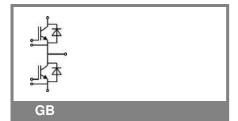
SKM 300GB066D

F	ea	+	rc	
Г	eа	ιu	16	;5


- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C

Typical Applications*

- · AC inverter drives
- UPS
- Electronic welders


Remarks

- Case temperature limited to T_c = 125°C max, recommended T_{op} = -40 ... +150°C
- Product reliability results are valid for T_i ≤150°C
- Short circuit data: $t_p \le 6$ s; $V_{GE} \le 15V$; $T_j = 150$ °C; $V_{cc} \le 360V$, use of soft R_G necessary!
- Take care of over-voltage caused by stray inductances

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

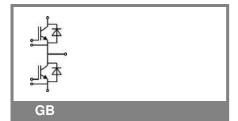
SEMITRANS[®] 3

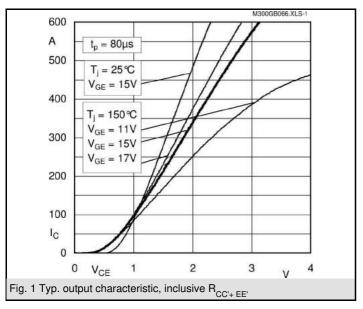
Trench IGBT Modules

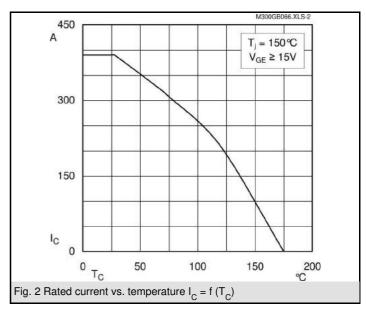
SKM 300GB066D

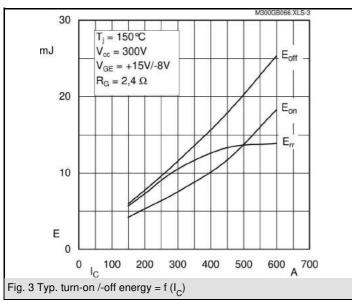
Z _{th} Symbol	Conditions	Values	Units
Z _{th(j-c)l}	i = 1	107	mk/W
R _i	i = 2	30	mk/W
R _i R _i	i = 3	11,6	mk/W
R _i	i = 4	1,4	mk/W
tau _i	i = 1	0,054	s
tau _i	i = 2	0,0144	s
tau _i	i = 3	0,0007	s
tau _i	i = 4	0,0004	s
Z,,,,,,,,,,,	•		
Z _{th(j-c)D}	i = 1	140	mk/W
R _i	i = 2	82	mk/W
R _i	i = 3	23,5	mk/W
R _i	i = 4	4,5	mk/W
tau _i	i = 1	0,054	s
taui	i = 2	0,01	s
taui	i = 3	0,0015	s
tau _i	i = 4	0,0002	s

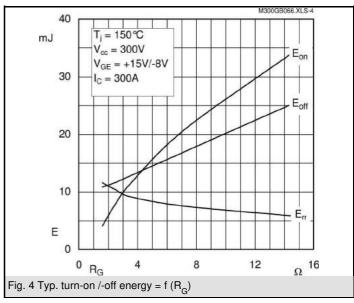
Features

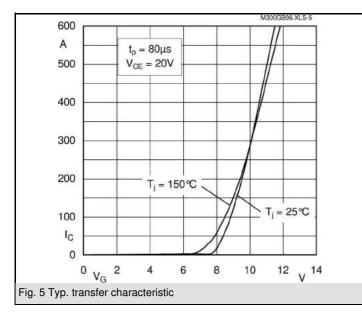

- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C

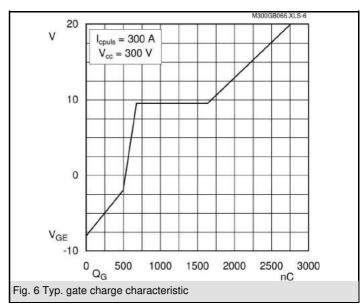

Typical Applications*

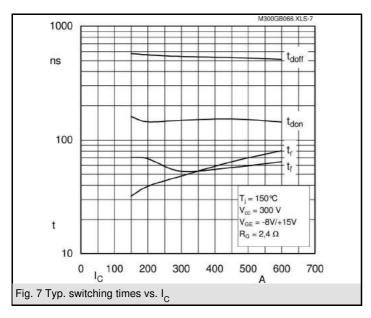

- AC inverter drives
- **UPS**
- · Electronic welders

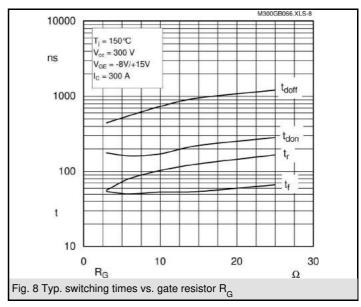

Remarks

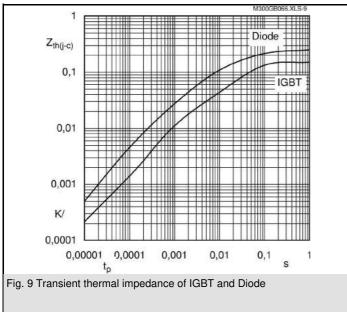

- Case temperature limited to T_c = 125°C max, recommended T_{op} = -40 ... +150°C
- Product reliability results are valid for $T_i \le 150$ °C
- Short circuit data: $t_p \le 6$ s; $V_{GE} \le 15V$; $T_j = 150$ °C; $V_{cc} \le 360V$, use of soft R_G necessary!
- Take care of over-voltage caused by stray inductances

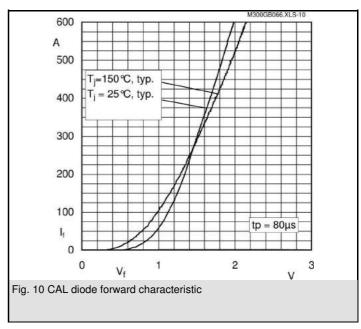


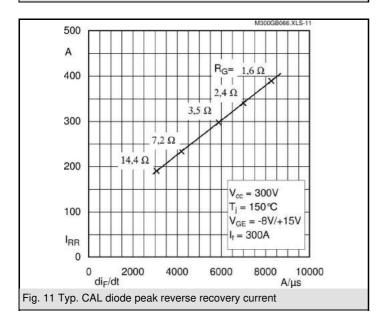


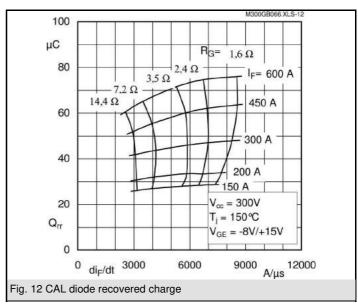


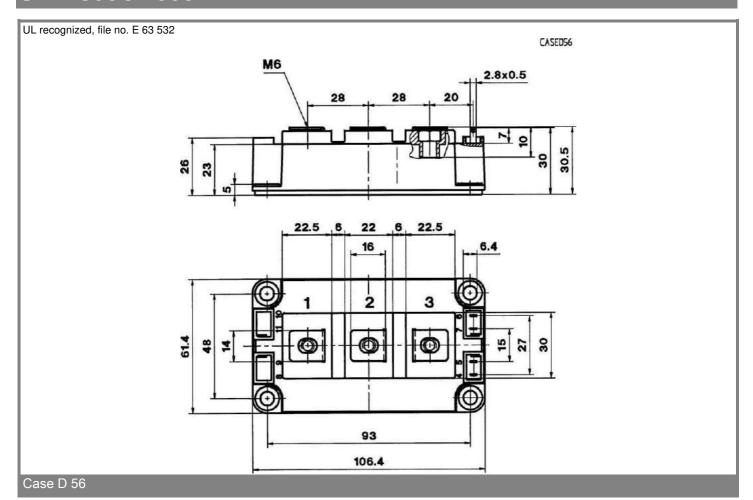


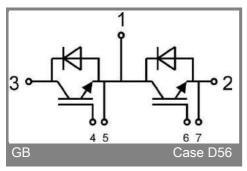




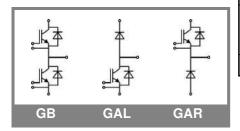








SEMITRANS[®] 3


Superfast IGBT Modules

SKM 300GB063D SKM 300GAR063D SKM 300GAL063D

Features

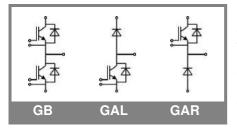
- NPT- Non punch-through IGBT
- Low tail current with low temperature dependence
- High short circuit capability, self limiting if term. G is clamped to E
- Pos. temp.-coeff. of V_{CEsat}
- 50 % less turn off losses
- 30 % less short circuit current
- Very low C_{ies}, C_{oes}, C_{res}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology without hard mould
- Large clearance (13 mm) and creepage distances (20 mm)

- Switching (not for linear use)
- Switched mode power supplies
- · AC inverter servo drives
- UPS uninterruptable power supplies
- Welding inverters

Absolute	Absolute Maximum Ratings					
Symbol	Conditions		Values	Units		
IGBT						
V_{CES}	T _j = 25 °C		600	V		
I _C	T _j = 150 °C	T _{case} = 25 °C	400	Α		
		T _{case} = 70 °C	300	Α		
I _{CRM}	I _{CRM} =2xI _{Cnom}		600	Α		
V_{GES}			± 20	V		
t _{psc}	V_{CC} = 300 V; $V_{GE} \le 20$ V; $V_{CES} < 600$ V	T _j = 125 °C	10	μs		
Inverse D	Diode					
I _F	T _j = 150 °C	T_{case} = 25 °C	250	Α		
		T _{case} = 80 °C	170	Α		
I _{FRM}	I _{FRM} =2xI _{Fnom}		600	Α		
I _{FSM}	$t_p = 10 \text{ ms; sin.}$	T _j = 150 °C	1600	Α		
Freewhee	eling Diode					
I _F	T _j = 150 °C	$T_c = 25 ^{\circ}C$	400	Α		
		T _c = 80 °C	270	Α		
I _{FRM}	I _{FRM} =2xI _{Fnom}		800	Α		
I _{FSM}	$t_p = 10 \text{ ms; sin.}$	T _j = 150 °C	2800	Α		
Module	•					
$I_{t(RMS)}$			500	Α		
T _{vj}			- 40 + 150	°C		
T _{stg}			- 40 + 125	°C		
V _{isol}	AC, 1 min.		2500	V		

Characteristics $T_c =$			25 °C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_{C} = 6 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C		0,2	0,6	mA
V_{CE0}		T _j = 25 °C		1,05		V
		T _j = 125 °C		1		V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		3,2		mΩ
		T _j = 125°C		4,7		mΩ
V _{CE(sat)}	I _{Cnom} = 300 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		2,1	2,5	V
		$T_j = 125^{\circ}C_{chiplev.}$		2,4	2,8	V
C _{ies}				17		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		2		nF
C _{res}				1,2		nF
Q_G	V _{GE} = 0V+15V			720		nC
R _{Gint}	T _j = °C			1,2		Ω
t _{d(on)}				160		ns
t _r	$R_{Gon} = 6 \Omega$	$V_{CC} = 300V$		80		ns
Ė _{on}		I _C = 300A		14		mJ
^t d(off)	$R_{Goff} = 6 \Omega$	T _j = 125 °C		550		ns
t _f		$V_{GE} = \pm 15V$		50		ns
E _{off}				13		mJ
$R_{th(j-c)}$	per IGBT				0,09	K/W

Superfast IGBT Modules


SKM 300GB063D SKM 300GAR063D SKM 300GAL063D

Features

- NPT- Non punch-through IGBT
- Low tail current with low temperature dependence
- High short circuit capability, self limiting if term. G is clamped to E
- Pos. temp.-coeff. of V_{CEsat}
- 50 % less turn off losses
- 30 % less short circuit current
- Very low C_{ies}, C_{oes}, C_{res}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology without hard mould
- Large clearance (13 mm) and creepage distances (20 mm)

Typical Applications*

- Switching (not for linear use)
- Switched mode power supplies
- · AC inverter servo drives
- UPS uninterruptable power supplies
- · Welding inverters

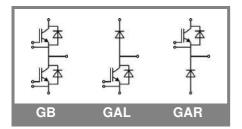
Characte	ristics					
Symbol	Conditions		min.	typ.	max.	Units
Inverse D						
$V_F = V_{EC}$	$I_{Fnom} = 300 \text{ A}; V_{GE} = 0 \text{ V}$	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		1,65	2	V
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$		1,65	2	V
V_{F0}		T _j = 125 °C			0,9	V
r _F		T _j = 125 °C		3	3,7	mΩ
I _{RRM}	I _F = 300 A	T _j = 125 °C		120		Α
Q_{rr}		•		18		μC
E _{rr}	$V_{GE} = -15 \text{ V}; V_{CC} = 300 \text{ V}$					mJ
R _{th(j-c)D}	per diode				0,25	K/W
Freewhee	eling Diode					•
$V_F = V_{EC}$	I _{Fnom} = 400 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev.}		1,65	2	V
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,65	2	V
V_{F0}		T _j = 125 °C			0,9	V
r _F		T _j = 125 °C T _j = 125 °C			3	V
I _{RRM}	I _F = 300 A	T _j = 125 °C		130		Α
Q_{rr}				23		μC
E _{rr}	$V_{GE} = -15 \text{ V}; V_{CC} = 300 \text{ V}$					mJ
$R_{th(j-c)FD}$	per diode				0,15	K/W
Module						
L _{CE}				15	20	nΗ
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,35		mΩ
		T _{case} = 125 °C		0,5		mΩ
R _{th(c-s)}	per module				0,038	K/W
M _s	to heat sink M6		3		5	Nm
M _t	to terminals M6		2,5		5	Nm
w					325	g

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, chapter IX.

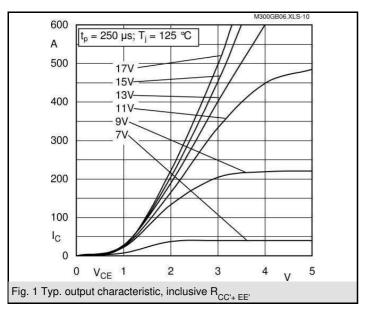
*IMPORTANT INFORMATION AND WARNINGS

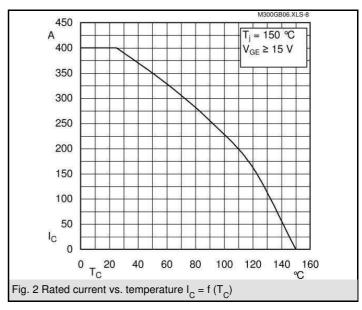
The specifications of SEMIKRON products may not be considered as guarantee or assurance of product characteristics

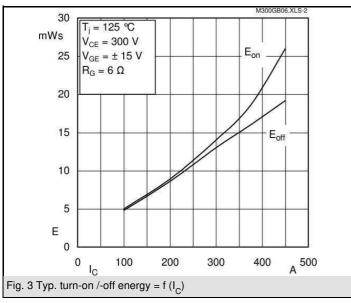
("Beschaffenheitsgarantie"). The specifications of SEMIKRON products describe only the usual characteristics of products to be expected in typical applications, which may still vary depending on the specific application. Therefore, products must be tested for the respective application in advance. Application adjustments may be necessary. The user of SEMIKRON products is responsible for the safety of their applications embedding SEMIKRON products and must take adequate safety measures to prevent the applications from causing a physical injury, fire or other problem if any of SEMIKRON products become faulty. The user is responsible to make sure that the application design is compliant with all applicable laws, regulations, norms and standards. Except as otherwise explicitly approved by SEMIKRON in a written document signed by authorized representatives of SEMIKRON, SEMIKRON products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. No representation or warranty is given and no liability is assumed with respect to the accuracy, completeness and/or use of any information herein, including without limitation, warranties of non-infringement of intellectual property rights of any third party. SEMIKRON does not assume any liability arising out of the applications or use of any product; neither does it convey any license under its patent rights, copyrights, trade secrets or other intellectual property rights, nor the rights of others. SEMIKRON makes no representation or warranty of non-infringement or alleged non-infringement of intellectual property rights of any third party which may arise from applications. Due to technical requirements our products may contain dangerous substances. For information on the types in question please contact the nearest SEMIKRON sales office. This document supersedes and replaces all information previously supplied and may be superseded by updates. SEMIKRON reserves the right to make changes.

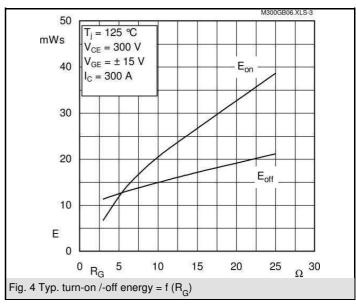

Superfast IGBT Modules

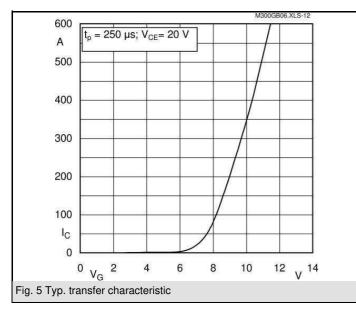
SKM 300GB063D SKM 300GAR063D SKM 300GAL063D

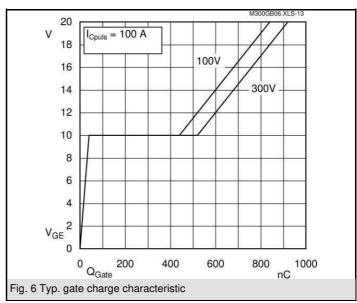

Features

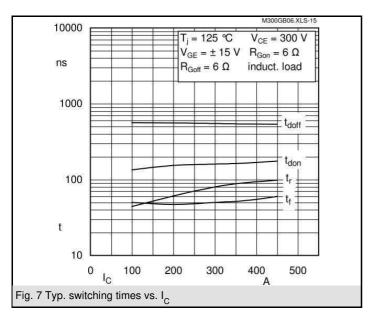

- NPT- Non punch-through IGBT
- Low tail current with low temperature dependence
- High short circuit capability, self limiting if term. G is clamped to E
- Pos. temp.-coeff. of V_{CEsat}
- 50 % less turn off losses
- 30 % less short circuit current
- Very low C_{ies}, C_{oes}, C_{res}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology without hard mould
- Large clearance (13 mm) and creepage distances (20 mm)

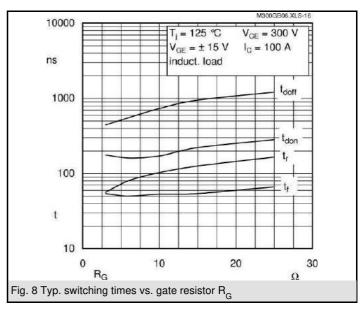

- Switching (not for linear use)
- Switched mode power supplies
- AC inverter servo drives
- UPS uninterruptable power supplies
- · Welding inverters

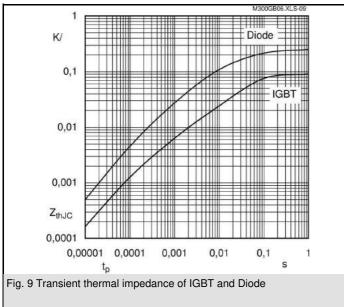


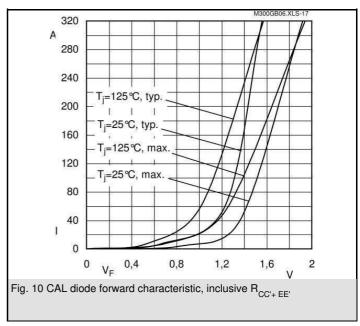

Z _{th}			
Symbol	Conditions	Values	Units
${f Z}_{{\sf R_i}}$			
R _i	i = 1	65	mk/W
R_i	i = 2	19	mk/W
R_i	i = 3	4,7	mk/W
R_i	i = 4	1,3	mk/W
tau _i	i = 1	0,0518	s
tau _i	i = 2	0,0241	s
tau _i	i = 3	0,0021	s
tau _i	i = 4	0,0001	s
Z _{th(j-c)D}	<u>.</u>		<u>.</u>
R _i	i = 1	140	mk/W
R_i	i = 2	85	mk/W
R_i	i = 3	20,55	mk/W
R_i	i = 4	4,45	mk/W
tau _i	i = 1	0,0613	s
tau _i	i = 2	0,0041	s
tau _i	i = 3	0,0045	s
tau _i	i = 4	0,0003	s

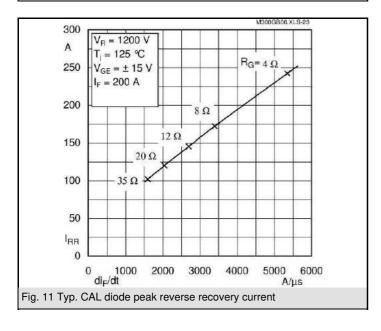


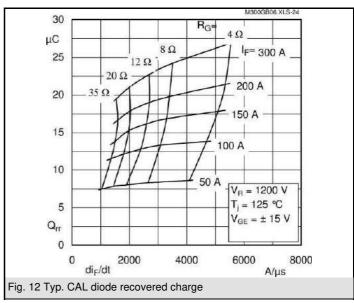


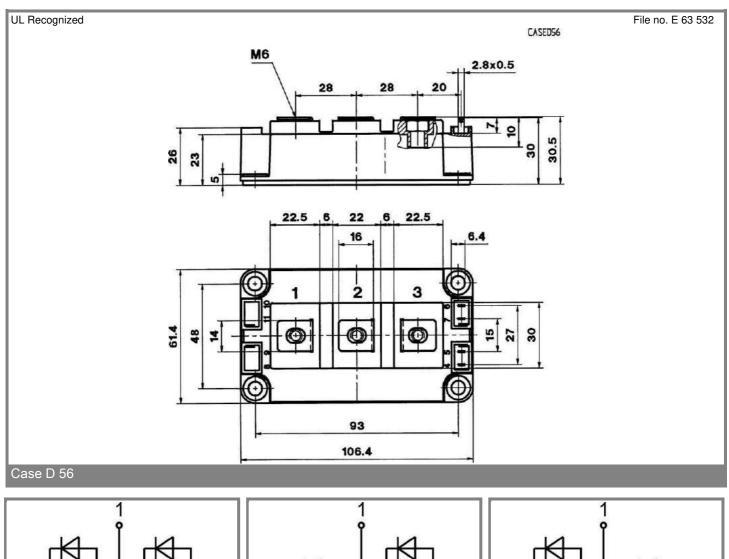


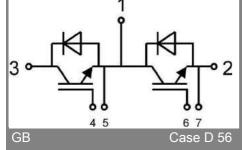


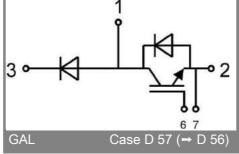


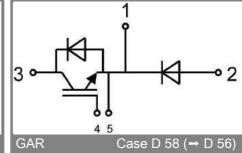


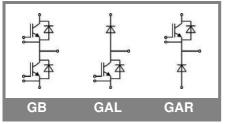











Ultra Fast IGBT Modules

SKM 400GB125D **SKM 400GAL125D SKM 400GAR125D**

Features

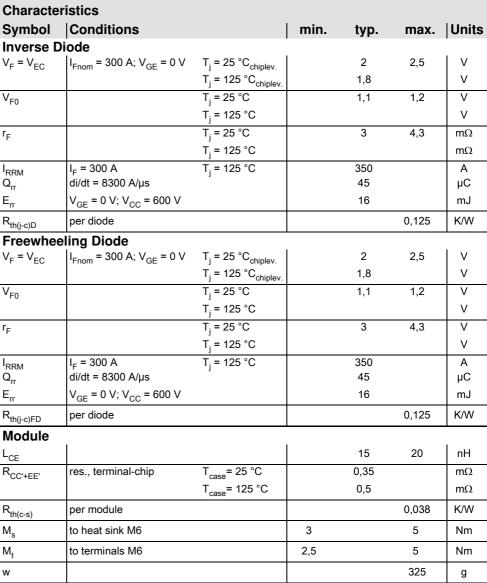
- · Low inductance case
- Short tail current with low temperature dependence
- · High short circuit capability, self limiting to 6 x I_{cnom}
 • Fast & soft inverse CAL diodes
- Isolated copper baseplate using **DBC** Direct Copper Bonding Technology
- · Large clearance (13 mm) and creepage distances (20 mm)

- Switched mode power supplies at $f_{sw} > 20kHz$
- Resonant inverters up to 100 kHz
- Inductive heating
- Electronic welders at f_{sw} > 20 kHz

Absolute	Absolute Maximum Ratings $T_c = 25 ^{\circ}\text{C}$, unless otherwise specified					
Symbol	Conditions		Values	Units		
IGBT				_		
V_{CES}	$T_{j} = 25 ^{\circ}\text{C}$ $T_{j} = 150 ^{\circ}\text{C}$		1200	V		
I _C	T _j = 150 °C	T _{case} = 25 °C	400	Α		
		T _{case} = 80 °C	300	Α		
I _{CRM}	I _{CRM} =2xI _{Cnom}		600	Α		
$V_{\rm GES}$			± 20	V		
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V	T _j = 125 °C	10	μs		
Inverse D	Diode					
I _F	T _j = 150 °C	T_{case} = 25 °C	390	Α		
		T _{case} = 80 °C	260	Α		
I _{FRM}	I _{FRM} =2xI _{Fnom}		600	Α		
I _{FSM}	$t_p = 10 \text{ ms}; \sin.$	T _j = 150 °C	2880	Α		
Freewhee	eling Diode					
I_{F}	T _j = 150 °C	T_{case} = 25 °C	390	Α		
		T _{case} = 80 °C	260	Α		
I _{FRM}	I _{FRM} =2xI _{Fnom}		600	Α		
I _{FSM}	$t_p = 10 \text{ ms; sin.}$	T _j = 150 °C	2880	Α		
Module			•			
I _{t(RMS)}			500	Α		
T _{vj}			- 40+ 150	°C		
T _{stg}			- 40+ 125	°C		
V _{isol}	AC, 1 min.		4000	V		

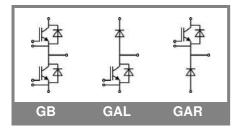
Characteristics $T_c = 25$ °C, unless otherwise spe					ecified	
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 12 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	$T_j = 25 ^{\circ}C$		0,15	0,45	mA
V _{CE0}		T _j = 25 °C		1,4		V
		T _j = 125 °C		1,7		V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		6,3		mΩ
		T _j = 125°C		7,6		mΩ
V _{CE(sat)}	I _{Cnom} = 300 A, V _{GE} = 15 V			3,3	3,85	V
		$T_j = 125^{\circ}C_{chiplev.}$		4	4,55	V
C _{ies}				22	30	nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		3,3	4	nF
C _{res}				1,2	1,6	nF
Q_G	$V_{GE} = 0V - +20V$			2650		nC
R_{Gint}	T _j = °C			1,25		Ω
t _{d(on)}				70		ns
t _r	$R_{Gon} = 2 \Omega$	V _{CC} = 600V		50		ns
E _{on}	D = 2.0	I _C = 300A		17 500		mJ
t _{d(off)} t _f	$R_{Goff} = 2 \Omega$	T _j = 125 °C V _{GE} = ±15V		500 32		ns ns
E _{off}		GE - 10 V		18		mJ
	ICDT			10	0.05	
R _{th(j-c)}	per IGBT				0,05	K/W

Ultra Fast IGBT Modules


SKM 400GB125D SKM 400GAL125D SKM 400GAR125D

Features

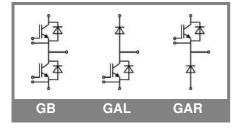
- Low inductance case
- Short tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DBC Direct Copper Bonding Technology
- Large clearance (13 mm) and creepage distances (20 mm)


Typical Applications*

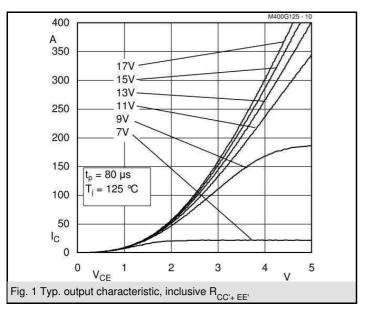
- Switched mode power supplies at f_{sw} >20kHz
- Resonant inverters up to 100 kHz
- Inductive heating
- Electronic welders at f_{sw} > 20 kHz

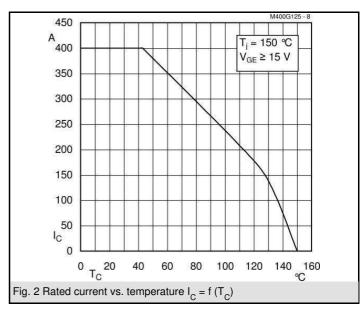
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

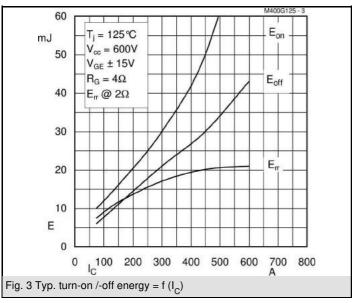
* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

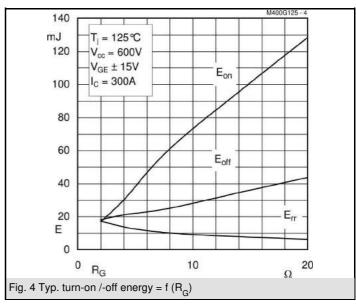

Ultra Fast IGBT Modules

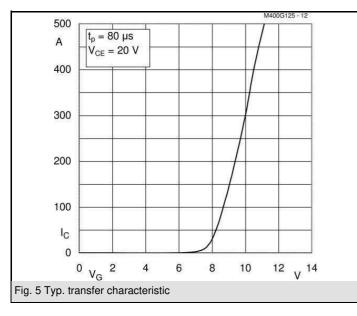
SKM 400GB125D **SKM 400GAL125D SKM 400GAR125D**

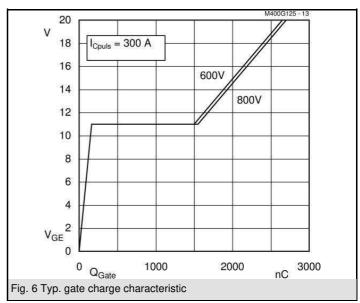

Fe	Э.	tı,	r۵	0
ге	a	ιu	ıe	3

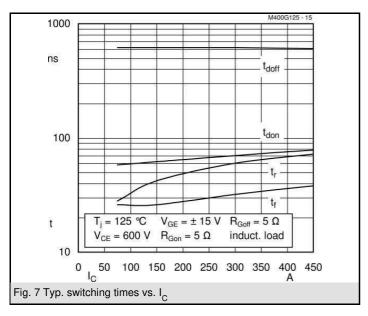

- Low inductance case
- Short tail current with low temperature dependence
- · High short circuit capability, self limiting to 6 x I_{cnom}
 • Fast & soft inverse CAL diodes
- Isolated copper baseplate using **DBC** Direct Copper Bonding Technology
- · Large clearance (13 mm) and creepage distances (20 mm)

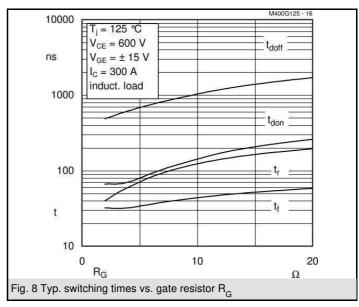

- Switched mode power supplies at $f_{sw} > 20kHz$
- Resonant inverters up to 100 kHz
- Inductive heating
- Electronic welders at f_{sw} > 20 kHz

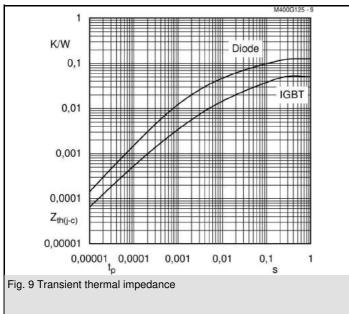


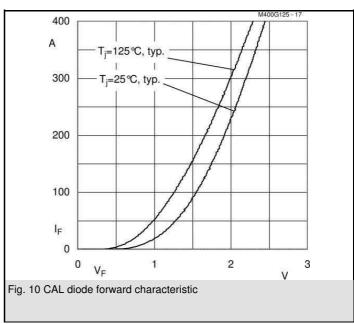

Z _{th}			
Symbol	Conditions	Values	Units
Z,,,,,,,,			
Z _{th(j-c)l}	i = 1	36	mk/W
R _i	i = 2	10,5	mk/W
R _i	i = 3	3	mk/W
R _i	i = 4	0,5	mk/W
tau _i	i = 1	0,0744	S
tau _i	i = 2	0,0078	s
tau _i	i = 3	0,0016	s
tau _i	i = 4	0,0002	s
Z _{th(j-c)D}			·
R _i	i = 1	75	mk/W
R_i	i = 2	38	mk/W
R_{i}	i = 3	10,6	mk/W
R_{i}	i = 4	1,4	mk/W
tau _i	i = 1	0,0386	s
tau _i	i = 2	0,0201	s
tau _i	i = 3	0,001	s
tau _i	i = 4	0,003	s

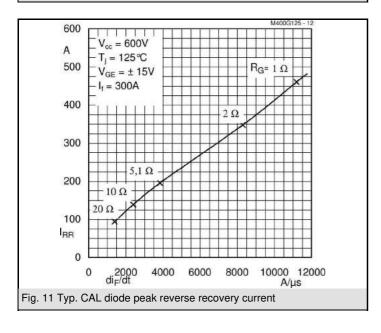


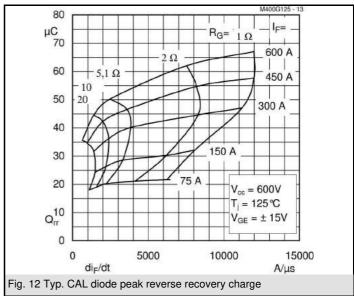


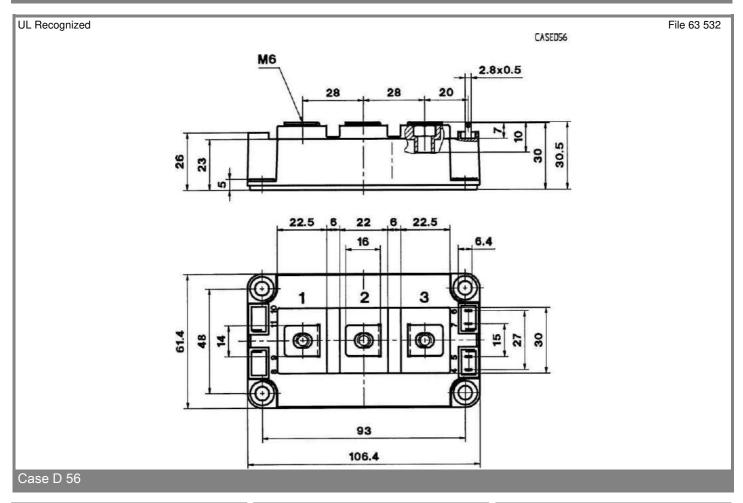


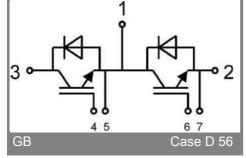


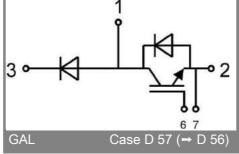


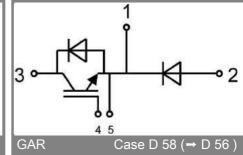


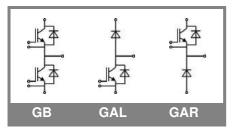











Ultra Fast IGBT Modules

SKM 200GB125D **SKM 200GAL125D SKM 200GAR125D**

Features

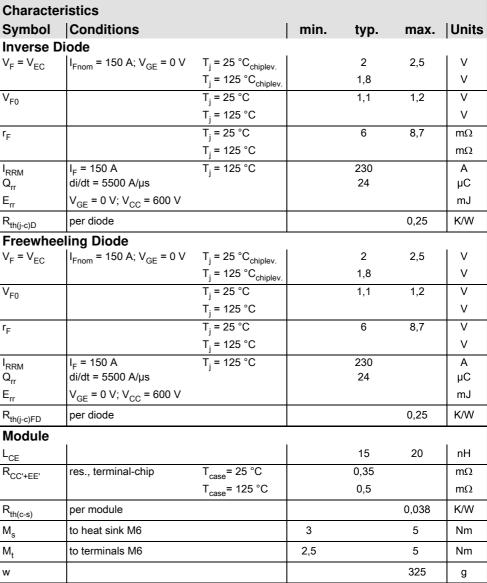
- · N channel, homogeneous Si
- Low inductance case
- Short tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
 • Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (13 mm) and creepage distance (20 mm)

- Switched mode power supplies at $f_{sw} > 20 \text{ kHz}$
- Resonant inverters up to 100 kHz
- Inductive heating
- Electronic welders at f_{sw} > 20 kHz

Absolute Maximum Ratings T _c = 25 °C, unless otherwise specific					
Symbol	Conditions		Values	Units	
IGBT					
V _{CES}	T _j = 25 °C T _i = 150 °C		1200	V	
I _C	T _j = 150 °C	T _{case} = 25 °C	200	Α	
		T _{case} = 80 °C	160	Α	
I _{CRM}	I _{CRM} =2xI _{Cnom}		300	Α	
V_{GES}			± 20	V	
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; VCES < 1200 V	T _j = 125 °C	10	μs	
Inverse D	iode				
I _F	T _j = 150 °C	T_{case} = 25 °C	200	Α	
		T _{case} = 80 °C	130	Α	
I _{FRM}	I _{FRM} =2xI _{Fnom}		300	Α	
I _{FSM}	$t_p = 10 \text{ ms; sin.}$	T _j = 150 °C	1440	Α	
Freewhee	ling Diode				
I _F	$T_j = {^{\circ}C}$	$T_c = 25 ^{\circ}C$	200	Α	
		T _c = 80 °C	130	Α	
I _{FRM}	I _{FRM} =2xI _{Fnom}		300	Α	
I _{FSM}	t _p = 10 ms;	T _j = 150 °C	1440	Α	
Module					
$I_{t(RMS)}$			500	Α	
T _{vj}			- 40+ 150	°C	
T _{stg}			- 40+ 125	°C	
V _{isol}	AC, 1 min.		4000	V	

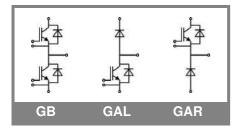
Character	Characteristics $T_c =$				25 °C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units		
IGBT								
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 6 \text{ mA}$		4,5	5,5	6,5	V		
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C		0,15	0,45	mA		
V _{CE0}		T _j = 25 °C		1,5	1,75	V		
		T _j = 125 °C				V		
r _{CE}	V _{GE} = 15 V	T _j = 25°C		12	14	mΩ		
		T _j = 125°C				mΩ		
V _{CE(sat)}	I _{Cnom} = 150 A, V _{GE} = 15 V	T _j = °C _{chiplev.}		3,3	3,85	V		
C _{ies}				10	13	nF		
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		1,5	2	nF		
C _{res}				0,8	1,2	nF		
Q_G	V _{GE} = 0V - +20V			1300		nC		
R _{Gint}	$T_j = ^{\circ}C$			2,5		Ω		
t _{d(on)}				75		ns		
t _r	$R_{Gon} = 4 \Omega$	V _{CC} = 600V		36		ns		
E _{on}	5	I _C = 150A		14		mJ		
t _{d(off)}	$R_{Goff} = 4 \Omega$	T _j = 125 °C		420		ns		
t _f		V _{GE} = ±15V		25		ns		
E _{off}						mJ		
R _{th(j-c)}	per IGBT				0,09	K/W		

Ultra Fast IGBT Modules


SKM 200GB125D **SKM 200GAL125D SKM 200GAR125D**

Features

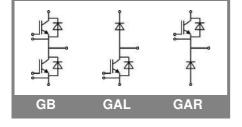
- N channel, homogeneous Si
- Low inductance case
- Short tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
 Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (13 mm) and creepage distance (20 mm)


Typical Applications*

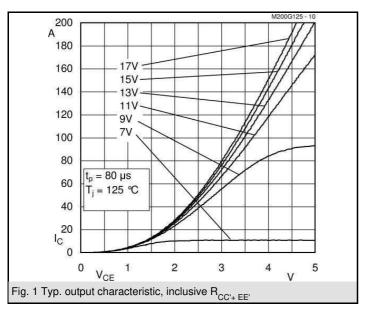
- Switched mode power supplies at $f_{sw} > 20 \text{ kHz}$
- Resonant inverters up to 100 kHz
- Inductive heating
- Electronic welders at f_{sw} > 20 kHz

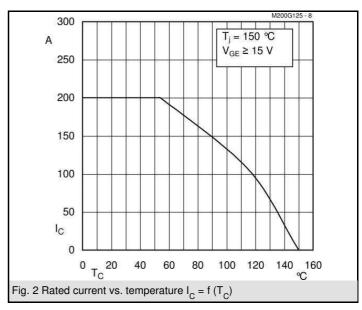
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

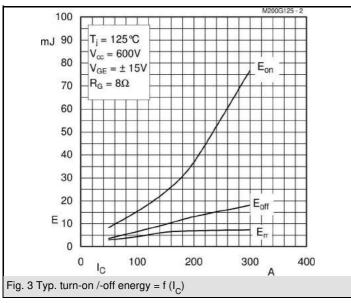
* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

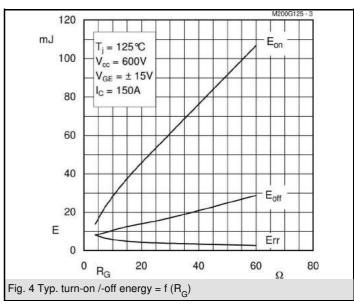

Ultra Fast IGBT Modules

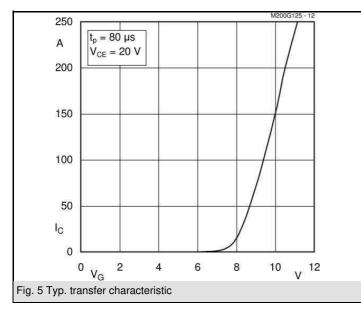
SKM 200GB125D **SKM 200GAL125D SKM 200GAR125D**


Fe	Э.	tı,	r۵	0
ге	a	ιu	ıe	3


- N channel, homogeneous Si
- Low inductance case
- Short tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
 • Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (13 mm) and creepage distance (20 mm)


- Switched mode power supplies at $f_{sw} > 20 \text{ kHz}$
- Resonant inverters up to 100 kHz
- Inductive heating
- Electronic welders at f_{sw} > 20 kHz




Z _{th} Symbol	Conditions	Values	Units
Z _{th(j-c)l}			
R _i	i = 1	60	mk/W
R_i	i = 2	23	mk/W
R_i	i = 3	5,9	mk/W
R _i	i = 4	1,1	mk/W
tau _i	i = 1	0,0744	s
tau _i	i = 2	0,0087	s
tau _i	i = 3	0,002	s
tau _i	i = 4	0,0015	s
Z _{th(j-c)D}	•		•
R _i	i = 1	160	mk/W
R_{i}	i = 2	67	mk/W
R_{i}	i = 3	20	mk/W
R _i	i = 4	3	mk/W
tau _i	i = 1	0,0536	s
tau _i	i = 2	0,0034	s
tau _i	i = 3	0,077	s
tau _i	i = 4	0,0003	s

