VDE $\stackrel{+}{\mathbf{S}}$

FEATURES

- Sealed to meet the combination process of automatic wave soldering and cleaning needs
- Latching types available
- High switching capacity and high sensitivity in subminiature size 150 mW pick-up, 8 A inrush capacity: 51 A for 1a1b, 35 A for 2a
- High shock and vibration resistance Shock: 20 G, Vibration: 10 to 55 Hz at double amplitude of 2 mm

SPECIFICATIONS

Contacts

Arrangement			$\begin{aligned} & 1 \text { Form } A \\ & 1 \text { Form B } \end{aligned}$	2 Form A
Contact material			Gold flash over silver alloy	
Initial contact resistance, max.			$30 \mathrm{~m} \Omega$	
Rating (resistive)	Max. switching power		2,000 VA, 150 W	
	Max. switching voltage		380 V AC, 250 V DC	
	Max. switching current		8 A	
	Min. switching capacity*1		$100 \mathrm{~mA}, 5 \mathrm{~V}$ DC	
HP rating			1/4 HP 125, 250 V AC	
Inrush current capability			51 A (TV-3 equivalence) for 1a1b 35 A (TV-1 equivalence) for 2a	
Expected life (min. operations)	Mechanical (at 180 cpm)		10^{7}	
	Electrical	8 A 250 V AC (resistive)	10^{5}	
		5 A 30 V DC (resistive)	2×10^{5}	
		3 A 100 V AC (lamp)	3×10^{4}	-
		1 A 100 V AC (lamp)	-	3×10^{4}

Coil (polarized) (at $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$)

Single side stable	Nominal operating power	Approx. 240 mW
Latching	Nominal set and reset power	Approx. 240 mW

\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

Remarks

* Specifications will vary with foreign standards certification ratings.
*1 Measurement at same location as "Initial breakdown voltage" section
*2 Detection current: 10 mA
${ }^{*}$ Wave is standard shock voltage of $\pm 1.2 \times 50 \mu \mathrm{~s}$ according to JEC-212-1981
${ }^{*} 4$ Excluding contact bounce time
${ }^{*} 5$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
${ }^{*} 6$ Half-wave pulse of sine wave: 6 ms
*7 Detection time: 10 s
${ }^{* 8}$ Refer to 6 . Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT

Characteristics (at $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F} \mathbf{5 0 \%}$ Relative humidity)

Max. operating speed			20 cpm (at rated load)
Initial insulation resistance*1			$1,000 \mathrm{M} \Omega$ (at 500 V DC)
Initial breakdown voltage*2	Between contact sets		2,000 Vrms
	Between open contacts		1,200 Vrms
	Between contacts and coil		3,750 Vrms
Surge voltage between coil and contact*3			Min. 6,000 V
Operate time*4 (at nominal voltage)			Max. 15 ms (Approx. 10 ms)
Release time (without diode)*4 (at nominal voltage)			Max. 10 ms (Approx. 8 ms)
Set time ${ }^{* 4}$ (latching) (at nominal voltage)			Max. 10 ms (Approx. 8 ms)
Reset time ${ }^{* 4}$ (latching) (at nominal voltage)			Max. 10 ms (Approx. 8 ms)
Temperature rise (at $60^{\circ} \mathrm{C}$)			Max. $55^{\circ} \mathrm{C}$ with nominal coil voltage and at 8 A switching current
Shock resistance		Functional*5	Min. $196 \mathrm{~m} / \mathrm{s}^{2}\{20 \mathrm{G}\}$
		Destructive*6	Min. $980 \mathrm{~m} / \mathrm{s}^{2}\{100 \mathrm{G}\}$
Vibration resistance		Functional*7	$117.6 \mathrm{~m} / \mathrm{s}^{2}\{12 \mathrm{G}\}, 10$ to 55 Hz at double amplitude of 2 mm
		Destructive	$176.4 \mathrm{~m} / \mathrm{s}^{2}\{18 \mathrm{G}\}, 10$ to 55 Hz at double amplitude of 3 mm
Conditions for operation, transport and storage*8 (Not freezing and condensing at low temperature)		Ambient temp.	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{Fto}+140^{\circ} \mathrm{F} \end{aligned}$
		Humidity	5 to 85\% R.H.
Unit weight			Approx. 10g . 353 oz

TYPICAL APPLICATIONS

Sequence controllers, facsimiles, telephone controls, remote control security devices and security equipment.

ORDERING INFORMATION

Ex. ST 1	L2	DC48V
\square		
Contact arrangement	Operating function	Coil voltage
1: 1 Form A 1 Form B 2: 2 Form A	Nil: Single side stable L2: 2 coil latching	$\begin{gathered} \text { DC } 3,5,6,9,12, \\ 24,48 \mathrm{~V} \end{gathered}$

(Notes) 1. Standard packing: Carton; 50 pcs., Case; 500 pcs.
2. 1 coil latching type available.

TYPES AND COIL DATA (at $\mathbf{2 0}^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Single side stable

Part No.		Nominal voltage, V DC	Pick-up voltage, V DC (max.)	Drop-out voltage, V DC (min.)	$\begin{gathered} \text { Maximum } \\ \text { allowable voltage, } \\ \text { V DC }\left(60^{\circ} \mathrm{C} 140^{\circ}\right) \end{gathered}$	Coil resistance,$\Omega(\pm 10 \%)$	Nominal operating current, mA
1 Form A 1 Form B	2 Form A						
ST1-DC3V	ST2-DC3V	3	2.4	0.3	4.5	38	78.9
ST1-DC5V	ST2-DC5V	5	4.0	0.5	7.5	105	47.6
ST1-DC6V	ST2-DC6V	6	4.8	0.6	9.0	150	40
ST1-DC9V	ST2-DC9V	9	7.2	0.9	13.5	360	25
ST1-DC12V	ST2-DC12V	12	9.6	1.2	18.0	600	20
ST1-DC24V	ST2-DC24V	24	19.2	2.4	36.0	2,400	10
ST1-DC48V	ST2-DC48V	48	38.4	4.8	72.0	9,000	5.3

2 coil latching

Part No.		Nominal voltage, V DC	Set and reset voltage, V DC (max.)	Maximum allowable voltage, V DC ($60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$)	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating current, mA
1 Form A 1 Form B	2 Form A					
ST1-L2-DC3V	ST2-L2-DC3V	3	2.4	4.5	40	75
ST1-L2-DC5V	ST2-L2-DC5V	5	4.0	7.5	110	45.5
ST1-L2-DC6V	ST2-L2-DC6V	6	4.8	9.0	155	38.7
ST1-L2-DC9V	ST2-L2-DC9V	9	7.2	13.5	360	25
ST1-L2-DC12V	ST2-L2-DC12V	12	9.6	18.0	640	18.8
ST1-L2-DC24V	ST2-L2-DC24V	24	19.2	36.0	2,400	10
ST1-L2-DC48V	ST2-L2-DC48V	48	38.4	72.0	10,200	4.7

DIMENSIONS

General tolerance: $\pm 0.2 \pm .008$

Tolerance: $\pm 0.1 \pm .004$

REFERENCE DATA

4. Influence of adjacent mounting

Sample: ST1-DC24V

5. Max. ambient temperature by operating power

6. Contact reliability

ST relay socket

ST-SS

Solder terminal socket

ST-PS

Specifications

Breakdown voltage	$4,000 \mathrm{Vrms}$ Coil/Contacts $2,000 \mathrm{Vrms} \mathrm{Contacts/Contacts}$
Insulation resistance	More than $1,000 \mathrm{M} \Omega$ between terminals
Heat resistance	$150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$ for 1 hr
Max. continuous current	10 A
Relay insertion life	15 times

DIMENSIONS

ST-PS

ST-SS
mm inch

Precautions for use (socket)

1. PC board mounting method

PC board pattern

The terminal configuration is symmetrical on the left and right, so an arrow mark $\hat{\text { s }}$ is stamped on the socket to prevent misinsertion. We recommend printing the same arrow mark 仓 on the component mounting side (side opposite from pattern) of the PC board. In this case, the terminal configuration becomes the terminal nos. noted near the drilling holes.
2. Chassis cutout

Chassis cutting dimensions

If the chassis hole is punched with a press, set so the release R on the front side (A side).
The range for chassis thickness is 0.6 to 2.2 mm . 024 to .087 inch.

3. Relay mounting and removal

(1) Align the directions of the relay and socket.

(2) Insert the relay all the way in, so it is securely in place.

(3) Press the part indicated by A in the B direction, and fasten by placing the hook on the relay.

(4). When removing the relay, completely release the hooks on both sides and pull the relay out.

For Cautions for Use, see Relay Technical Information

RoHS compliant
Protective construction: Sealed type

FEATURES

1. Even with small form factor, sensitive enough for direct ICdriving
The dimensions of this high-density 4gap balanced armature are $31 \mathrm{~mm} \times$ $14 \mathrm{~mm} \times 11 \mathrm{~mm} 1.220$ inch $\times .551$ inch $\times .433$ inch. Despite this small size, high sensitivity is achieved by a mechanism that incorporates highefficiency polarized magnetic circuits along with our exclusive spring alignment method. With an minimum operating power of about 150 mW , nominal operating power of 240 mW , this relay can be directly driven by transistor or chip controllers.

2. High switching capability

High contact pressure, low contact bounce, and forced separation structure that radically improves resistance to contact welding (1 Form A 1 Form B type equivalent to TV-3). Strong against lamp inductive loads, maximum switching capacity has reached 3,040 VA (8 A 380 V AC).
3. High breakdown voltage - Optimal for control in 250 V power circuits High breakdown voltage has been achieved. Between contacts and coil of 3,750 Vrms; Surge breakdown voltage between coil and contact of $6,000 \mathrm{~V}$, and between open contacts of 1,200 Vrms mean that these relays are suitable even for 250 V power circuit control.
4. Improved stability Conforms to all types of safety standards
Insulating distance of more than 3 mm .118 inch secured. Complies with Japan Electrical Appliance and Material Safety Law requirements for operating 200 V power supply circuits, and conforms with UL, CSA and VDE standards.
5. Latching types available In addition to single side stable types, convenient 2 coil latching types with memory functions are also available. Moreover, we offer 2 Form A specifications which, with double pole switching for applications such as 250 \checkmark power circuit switching, can enable safer designs.
6. Automatic cleaning possible

The sealed design means that these relays can undergo immersion in automatic washing systems and are suitable for automatic soldering. Even in difficult environments, the contacts remain reliable.
7. Easy to design PC board patterns

Features $4 / 10$ dual-in-line terminals. Because the lead spacing has a pitch greater than 7.54 mm .297 inch, designers can make easy adjustments with the width of the land size. This, along with the large insulation distance, simplifies the drawing of PC board patterns.
8. To improve soldering efficiency, preapplication of solder to the terminals is recommended
9. Sockets for PC board and soldering are available

ORDERING INFORMATION

Contact arrangement
1: 1 Form A 1 Form B
2: 2 Form A
Operating function
Nil: Single side stable
L2: 2 coil latching
Nominal coil voltage
DC 3, 5, 6, 9, 12, 24, 48 V
Contact material
F: AgSnO2 type contact
Note: Certified by UL, CSA and VDE

TYPES

Contact arrangement	Nominal coil voltage	Single side stable	2 coil latching
		Part No.	Part No.
1 Form A 1 Form B	3V DC	ST1-DC3V-F	ST1-L2-DC3V-F
	5V DC	ST1-DC5V-F	ST1-L2-DC5V-F
	6V DC	ST1-DC6V-F	ST1-L2-DC6V-F
	9 V DC	ST1-DC9V-F	ST1-L2-DC9V-F
	12 V DC	ST1-DC12V-F	ST1-L2-DC12V-F
	24V DC	ST1-DC24V-F	ST1-L2-DC24V-F
	48 V DC	ST1-DC48V-F	ST1-L2-DC48V-F
2 Form A	3V DC	ST2-DC3V-F	ST2-L2-DC3V-F
	5V DC	ST2-DC5V-F	ST2-L2-DC5V-F
	6V DC	ST2-DC6V-F	ST2-L2-DC6V-F
	9V DC	ST2-DC9V-F	ST2-L2-DC9V-F
	12 V DC	ST2-DC12V-F	ST2-L2-DC12V-F
	24 V DC	ST2-DC24V-F	ST2-L2-DC24V-F
	48V DC	ST2-DC48V-F	ST2-L2-DC48V-F

Standard packing: Carton: 50 pcs.; Case: 500 pcs.

* Terminal sockets available.

RATING

1. Coil data
1) Single side stable

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
3V DC	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	75 mA	38Ω	Approx. 240 mW	$150 \% \mathrm{~V}$ of nominal voltage
5V DC			47 mA	105Ω		
6V DC			40 mA	150Ω		
9V DC			25 mA	360Ω		
12 V DC			20 mA	600Ω		
24V DC			10 mA	2,400 Ω		
48 V DC			4.7 mA	9,000 ${ }^{\text {a }}$		

2) 2 coil latching

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		perating nt $0^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{array}{r} \text { Coil re } \\ {[\pm 10 \%] \text { (at }} \end{array}$	stance $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nomin	perating er	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
3V DC	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	75 mA	75 mA	40Ω	40Ω	Approx. 240mW	Approx. 240mW	$150 \% \mathrm{~V}$ of nominal voltage
5V DC			45 mA	45 mA	110Ω	110Ω			
6V DC			37.5 mA	37.5 mA	155Ω	155Ω			
9V DC			25 mA	25 mA	360Ω	360Ω			
12 V DC			18.8 mA	18.8 mA	640Ω	640Ω			
24V DC			10 mA	10 mA	2,400 ${ }^{\text {a }}$	2,400 Ω			
48V DC			4.7 mA	4.7 mA	10,200	10,200			

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		1 Form A 1 Form B, 2 Form A
	Contact material		Au-flashed AgSnO_{2} type
	Contact resistance (Initial)		Max. $30 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
Rating	Max. switching power (resistive load)		$3,040 \mathrm{VA}, 150 \mathrm{~W}$
	Max. switching voltage		380 V AC, 250 V DC
	Max. switching current		8 A
	Nominal operating power		Approx. 240mW (Single side stable, 2 coil latching)
	Min. switching capacity (Reference value)*1		100 mA 5 V DC
Electrical characteristics	Insulation resistance (Initial) (at $25^{\circ} \mathrm{C}, 50 \%$ relative humidity)		Min. $1,000 \mathrm{M} \Omega$ (at 500 V DC) Measurement at same location as "Breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	1,200 Vrms for 1 min . (Detection current: 10 mA)
		Between contact sets	2,000 Vrms for 1 min . (Detection current: 10 mA)
		Between contact and coil	3,750 Vrms for 1 min . (Detection current: 10 mA)
	Surge breakdown voltage (Initial)*2		6,000 V (Between contact and coil)
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 15 ms [Max. 15 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 10 ms [Max. 15 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)
	Temperature rise (coil) (at $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$)		Max. $55^{\circ} \mathrm{C}$ (By resistive method, nominal voltage applied to the coil; contact carrying current: 8A.)
Mechanical characteristics	Shock resistance	Functional	Min. $196 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 2 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 3 mm
Expected life	Mechanical		Min. 10^{7} (at 180 times/min.)
	Electrical		Min. 10^{5} (8 A 250 V AC resistive) (ON : OFF $=1 \mathrm{~s} \mathrm{:} 5 \mathrm{~s}$)
Conditions	Conditions for operation, transport and storage ${ }^{\star 3}$		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+140^{\circ} \mathrm{F}$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed		30 cps
Unit weight			Approx. 10g . 353 oz

Notes: *1. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2. Wave is standard shock voltage of $\pm 1.2 \times 50 \mu$ s according to JEC-212-1981
*3. The upper limit of the ambient temperature is the maximum temperature that can satisfy the coil temperature rise value. Refer to Usage, transport and storage conditions in NOTES.

REFERENCE DATA

1. Max. switching power

2. Coil temperature rise

3. Influence of adjacent mounting

CAD Data

External dimensions

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

General tolerance: $\pm 0.5 \pm .020$

Schematic (Bottom view)
Single side stable
1 Form A 1 Form B 2 Form A
2 coil latching

1 Form A 1 Form B 2 Form A

SAFETY STANDARDS

UL/C-UL (Recognized)		CSA (Certified)		VDE (Certified)		TV rating (UL/CSA)	
File No.	Contact rating	File No.	Contact rating	File No.	Contact rating	File No.	Rating
E43028	$\begin{aligned} & \text { 8A } 250 \mathrm{~V} \text { AC } \\ & 1 / 4 \mathrm{HP} 125,250 \mathrm{~V} \text { AC } \\ & 5 \mathrm{~A} 30 \mathrm{~V} \text { DC } \\ & \hline \end{aligned}$	LR26550 etc.	$\begin{aligned} & \text { 8A 250V AC } \\ & 1 / 4 \mathrm{HP} 125,250 \mathrm{~V} \text { AC } \\ & 5 \mathrm{~A} 30 \mathrm{~V} \text { DC } \\ & \hline \end{aligned}$	1017	$\begin{aligned} & \text { 8A 250V AC }(\cos \phi=1.0) \\ & \text { 4A 250V AC }(\cos \phi=0.4) \\ & \text { 5A 30V DC } \end{aligned}$	$\begin{aligned} & \text { UL: E43028 } \\ & \text { CSA: LR26550 } \end{aligned}$	-

NOTES

1. For cautions for use, please read "GENERAL APPLICATION
GUIDELINES" on page B-1.
2. PC board patterns for 2 coil latching types
When applying relays in power supply operation circuits for finished products regulated by the Electrical Appliance and Material Safety Law, use the pattern shown below.

3. Soldering should be done under the following conditions:
1)

$250^{\circ} \mathrm{C} 482^{\circ} \mathrm{F}$ within 10 s
$300^{\circ} \mathrm{C} 572^{\circ} \mathrm{F}$ within 5 s
$350^{\circ} \mathrm{C} 662^{\circ}$ F within 3s
2) For automatic cleaning, the boiling method is recommended. Avoid ultrasonic cleaning which subjects the relays to high frequency vibrations, which may cause the contacts to stick. It is recommended that a fluorinated hydrocarbon or other alcoholic solvents be used.
4. When using, please be aware that the a contact and b contact sides of 1 Form A 1 Form B type may go on simultaneously at operate time and release time.

RoHS compliant

TYPES

Product name	Part No.
Terminal socket for PC board	ST-PS
Terminal socket for soldering	ST-SS

FEATURES

1. Possible to fit or remove the chassis with one touch ($\mathrm{t}=\mathbf{0 . 6} \mathbf{~ m m}$ to $\mathbf{2 . 2}$
mm . 024 inch to . 087 inch)
2. Easy design of PC board pattern
($2.54 \mathrm{~mm} \times 4$ pitch DIL terminal array)
3. High breakdown voltage.

SPECIFICATIONS

Item		Specifications
Breakdown voltage (Initial)	Between Between	ct and coil: 4,000 Vrms for 1 mi ct and terminal: 2,000 Vrms for
Insulation resistance (Initial)	Min. 1,000	between terminals (500V DC)
Heat resistance	$150^{\circ} \mathrm{C} 30$	r 1 hr
Max. continuous current	10 A	
Relay insertion life	15 times	
DIMENSIONS (mm inch)		The CAD data of the products can be downloaded from: http
Terminal socket for PC board		Terminal socket

CAD Data

PRECAUTIONS FOR USE (SOCKET)

1. PC board mounting method

PC board pattern

The terminal configuration is symmetrical on the left and right, so an arrow mark 仓 is stamped on the socket to prevent misinsertion. We recommend printing the same arrow mark $\hat{\imath}$ on the component mounting side (side opposite from pattern) of the PC board. In this case, the terminal configuration becomes the terminal nos. noted near the drilling holes.
2. Chassis cutout

Chassis cutting dimensions

If the chassis hole is punched with a press, set so the release R on the front side (A side).
The range for chassis thickness is 0.6 to
2.2 mm . 024 to .087 inch.
3. Relay mounting and removal
(1) Align the directions of the relay and socket.

Relay

(2) Insert the relay all the way in, so it is securely in place.

(3) Press the part indicated by A in the B direction, and fasten by placing the hook on the relay.

(4) When removing the relay, completely release the hooks on both sides and pull the relay out.

Реле panasonic,nais купить в Минске tel. +375447584780
www.fotorele.net www.tiristor.by радиодетали, электронные компоненты email minsk17@tut.by tel.+375 297584780 мтс

каталог, описание, технические, характеристики, datasheet, параметры, маркировка,габариты, фото

