ТИРИСТОРЫ

T161-125, T161-160, T161-200, T171-200, T171-250, T171-320

Тиристоры предназначены для работы в цепях постоянного и переменного тока различных силовых электротехнических установок частотой до 500 Гц, а также в полупроводниковых преобразователях электроэнергии.

Конструкция тиристоров штыревая в металлокерамическом корпусе с гибким выводом и прижимными контактами.

Климатическое исполнение и категория размещения УХЛ2 и Т2 для эксплуатации в атмосфере типа I и II по ГОСТ 15150-69.

По прочности и устойчивости к воздействию механических нагрузок тиристоры соответствуют группе М27 условий эксплуатации по ГОСТ 17516.1-90.

Тиристоры изготавливаются по ТУУ 32.1-30077685-020:2006.

Рекомендуемые охладители

Тиристоры	Охладители по ТУ У 32.1-30077685-015-2004	Площадь поверхности охладителя, см²		
T161-125, T161-160, T161-200	OP 171-80	1250		
	OP371-80	635,4		
T171-200, T171-250, T171-320	OP281-110	2173,5		
	OP 181-80	1250		

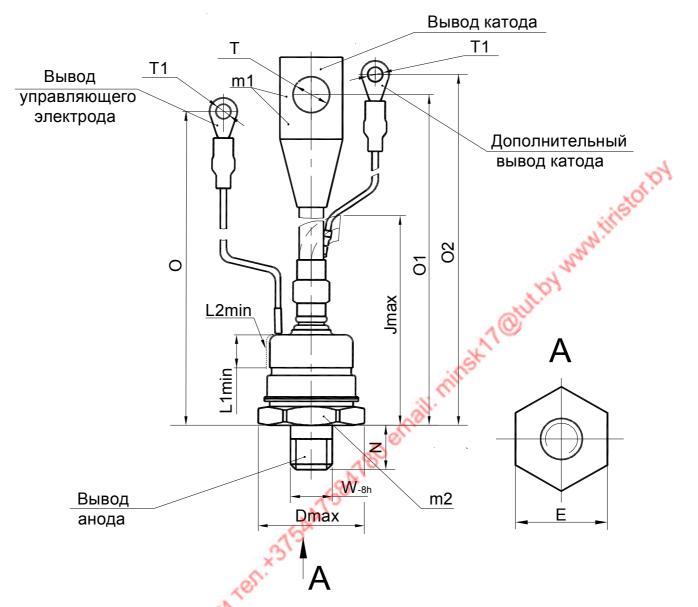
Допускается применение других охладителей с площадью поверхности не менее, чем у рекомендуемых.

Комплектность поставки и формулирование заказа

В комплект поставки входит:

- тиристор 1 шт;
- этикетка 1 шт на одну внутреннюю упаковку (пачку) тиристоров.

По согласованию с предприятием-изготовителем тиристоры могут поставляться с охладителем и комплектом крепежных деталей.


При заказе тиристоров необходимо указать: тип, класс, значение импульсного напряжения в открытом состоянии в вольтах, группу по критической скорости нарастания напряжения в закрытом состоянии, группу по времени выключения, вариант конструктивного исполнения (для Т171), климатическое исполнение и категорию размещения, количество тиристоров, комплектность поставки, номер технических условий.

Подбор тиристоров, предназначенных для параллельной работы, производится по заказу потребителя с обязательным указанием в договоре (контракте) на поставку. В заказе должно указываться количество тиристоров в одной параллели.

Пример заказа 50 штук тиристоров типа Т171-320 восемнадцатого класса, с критической скоростью нарастания напряжения в закрытом состоянии по седьмой группе, с временем выключения по группе Т2, импульсным напряжением в открытом состоянии 1,55 В (для параллельного включения) по 5 штук в одной параллели, I варианта конструктивного исполнения (с диаметром шпильки М24), климатического исполнения УХЛ, категории размещения 2.

T171-320-18-7T2-1,55 I вариант УХЛ2 ТУ У 32.1-30077685-020:2006 50 шт. по 5 штук в одной параллели, без охладителей.

ГАБАРИТНО-ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ

m1,m2 - контрольные точки измерения импульсного напряжения в открытом состоянии; m1-в одной из двух точек;

L1min - минимальное расстояние по воздуху между выводом анода и выводом управляющего электрода;

L2min - минимальная длина пути для тока утечки между этими выводами Форма наконечников и их обжатие не регламентируется.

Тип прибора	Вариант	50	Размеры, мм											Macca,	
	конструкт. исполнения	О	O1	O2	Т	T1	N	W _{-8h}	Dmax	Jmax	L1min	L2min	Е	г, не более	
T 161-125 T 161-160 T 161-200	erior	215±5	200±15	215±5			16±1	M20x1,5	36,5	85	12		32-1	270	
T 171-200	I	265.10	250.40	265.40	10,5 ^{+0,43}	4,2+0,3	40.4	M24x1,5		110		13		4.40	
T 171-250 T 171-320	II	265±10	250±10	265±10			19±1	M20x1,5	45,5	110	11		41 ₋₁	440	

Растягивающая сила для вывода катода $150\pm15,0$ H, для вывода управляющего электрода и дополнительного вывода катода $20\pm2,0$ H.

Крутящий момент для T161 25,0±2,5 H·м, для T171 - 30,0±3,0 H·м.

Параметры закрытого состояния

	Параметр		Значение	Условия установления				
Буквенное обозначение	Наименование, единица измерения	T161-125 T161-160	T161-200	T171-200 T171-250	T171-320	норм на параметры		
U _{dsm} U _{rsm}	Неповторяющееся импульсное напряжение в закрытом состоянии и неповторяющееся импульсное обратное напряжение, В, для классов: 6 8 10 11 12 14 16 18 20	670 900 1100 1200 1300 1500 1700 1900	670 900 1100 1200 1300 1500 1700	670 900 1100 1200 1300 1500 1700 1900 2200	670 900 1100 1200 1300 1500 1700 1900	Т _{jm} =125°С. Импульс напряжения синусоидальный однополупериодный одиночный длительностью не более 10 мс, управляющий вывод разомкнут.		
U _{drm} U _{rrm}	Повторяющееся импульсное напряжение в закрытом состоянии и повторяющееся импульсное обратное напряжение, В, для классов: 6 8 10 11 12 14 16 18 20	600 600 600 800 800 800 1000 1000 1000 1100 1100			600 800 1000 1100 1200 1400 1600 1800	Т _{jm} =125°С. Импульсы напряжения синусоидальные однополупериодные длительностью не более 10 мс частотой 50 Гц, управляющий вывод разомкнут.		
U _{DWM} U _{RWM}	Рабочее импульсное напряжение в закрытом состоянии и рабочее импульсное обратное напряжение, В		0,8U 0,8U					
U _D U _R	Постоянное напряжение в закрытом состоянии и постоянное обратное напряжение, В	18	0,6t 0,6t	T _c =85°C				
(du _D /dt) _{crit}	Критическая скорость нарастания напряжения в закрытом состоянии, В/мкс, не менее, для группы: 4 5 6 7	(Solar	20 32 50 10	$T_{ m jm}$ =125°C; $U_{ m DM}$ =0,67 $U_{ m DRM}$; $t_{ m u}$ >200мкс. Цепь управления разомкнута.				
I _{drm}	Повторяющийся импульсный ток в закрытом		2	$T_{ m jm}$ =25°C Цепь управления разомкнута.				
I _{RRM}	состоянии, повторяющийся импульсный обратный ток, мА, не более	20 30				T _{jm} =125°C Цепь управления разомкнута.		

Параметры открытого состояния

	Параметр	шри	метры							
				Значение	параметра			Условия установления норм на параметры		
Буквенное обозначение	Наименование, единица измерения	T161-125	T161-160	T161-200	T171-200	T171-250	T171-320			
I _{TAVM}	Максимально допустимый средний ток в открытом состоянии, А	125 160		20	200		250		320	T_c =85°C, импульсы тока синусоидальные однополупериодные длительностью не более 10 мс, частотой 50 Γ ц
	Фактический максимально допустимый средний ток в открытом состоянии, А	158	176	205	245	287	332	T_{c} =85°С, $U_{T(TO)}$, r_{T} при T_{jm}		
$\mathbf{I}_{ ext{TRMS}}$	Максимально допустимый действующий ток в открытом состоянии, А	196	251	31	4 393		502	T_c =85°C, импульсы тока синусоидальные однополупериодные длительностью не более 10 мс, частотой 50 Γ ц		
		2.8	4.4	5	.5	6.6	10.5	T _j =25°C		
$\mathbf{I}_{ ext{TSM}}$	Ударный ток в открытом состоянии, кА	2.5	4	Š	180 eq	nall's mil	9.5	T_{jm} =125°C, импульс тока синусоидальный однополупериодный одиночный длительностью не более 10 мс, U_R =0, I_G = I_{GT} при T_{jmin} .		
$\mathbf{U}_{\mathbf{TM}}$	Импульсное напряжение в открытом состоянии, В, не более	1.75	1.7	1.6/58	1.75 1.6			$T_j = 25$ °C, $I_T = 3.14 I_{TAVM}$		
T T	Пороговое напряжение		8	1	.1			T _j =25°C		
$\mathbf{U}_{\mathbf{T(TO)}}$	в открытом состоянии, В		0.95			0.97		T _{jm} =125°C		
	Динамическое сопротивление в	1.8	1.1	1	0.52	0.45	0.42	T _j =25°C		
$\mathbf{r}_{_{\mathrm{T}}}$	открытом состоянии, мОм	1.9	1.3	1	.1	0.6	0.55	T _{jm} =125°C		
I _H	Ток удержания, мА, не более	L		25	50			${ m T_{j}}{=}25{ m ^{\circ}C},\ { m U_{D}}{=}12{ m ~B}$ Цепь управления разомкнута		
	'M.	охладитель ОР171-80			охлад	итель ОР28	31-110	охлаждение:		
	(B)	54	58	60	85	93	95	естественное		
ī	Средний ток в	105	115	123	163	185	194	принудительное v=6 м/с		
$\mathbf{I_{TAV}}$	открытом состоянии с охладителем, А	охлад	цитель ОРЗ	71-80	охлад	цитель ОР1	81-80			
00	4	36	38	39	61	65	66	естественное		
COST		75	81	85	131	146	152	принудительное v=6 м/с		

Параметры управления

	Параметр	Значение параметра	Условия установления			
Буквенное обозначение	Наименование, единица измерения	T161-125, T161-160, T161-200, T171-200, T171-250, T171-320	условия установления норм на параметры			
T T	Отпирающее постоянное напряжение	3.5	T _j =25 °C, U _D =12 B			
$ m U_{GT}$	управления, В, не более	5.5	T _{jmin} =-60°C, U _D =12 B			
т	Отпирающий постоянный ток управления, мА,	200	T _j =25 °C, U _D =12 B			
$\mathbf{I}_{\mathbf{GT}}$	не более	400	T _{jmin} =-60°C, U _D =12 B			
$ m U_{GD}$	Неотпирающее постоянное напряжение управления, В, не менее	0.45	T _{im} =125°C, U _D =0,67U _{DRM}			
${f I}_{GD}$	Неотпирающий постоянный ток управления, мА, не менее	10	Напряжение источника управления - постоянное			
	Параметрь	і переключен ия	A T @tut.by			
	парамет рь	і переключения				

Параметры переключения

		ение иетра	and entire						
Буквенное обозначение	Наименование, единица измерения	T161-160	T171-250	Условия установления норм на параметры					
(di _T /dt) _{crit}	Критическая скорость нарастания тока в открытом состоянии,	16	50	$T_{ m jm}$ =125 °C, $~{ m U_D}$ =0,67 ${ m U_{DRM}}$, ${ m I_T}{ m \geq}{ m I_{TAVM}}$. Импульс тока синусоидальный однополупериодный частотой 50 ${ m \Gamma}$ ц.					
	А/мкс	500	600	$T_{\rm jm}$ =125°C, $U_{\rm D}$ =0,67 $U_{\rm DRM}$, $I_{\rm T}$ =2 $I_{\rm TAVM}$ \div 3 $I_{\rm TAVM}$. Импульс тока синусоидальный однополупериодный частотой 1 Γ ц. Режим цепи управления: форма - трапецеидальная; длительность импульса тока 50 мкс; амплитуда - 3 $I_{\rm GT}$ (при $T_{\rm jmin}$); длительность фронта не более 1 мкс. Внутреннее сопротивление источника управления 5 Ом. Время испытаний не менее 2 мин.					
t _q	Время выключения, мкс, не более, для группы: M2 P2 T2	20	50 00 50	$T_{\rm jm}$ =125°C, $I_{\rm T}$ = $I_{\rm TAVM}$, $t_{\rm imin}$ =300 мкс, $({\rm di}_{\rm T}/{\rm dt})_{\rm f}$ =5 A/мкс, $U_{\rm R}$ =100 B, $U_{\rm D}$ =0,67 $U_{\rm DRM}$, $t_{\rm umin}$ =200 мкс, $({\rm du}_{\rm D}/{\rm dt})_{\rm crit}$ =50 В/мкс					

ШТЫРЕВОЙ ТИРИСТОР ТИП Т161-160-16

Тиристоры предназначены для работы в цепях постоянного и переменного тока частотой до 500 Гц в различных преобразователях электроэнергии в бесконтактной и регулирующей аппаратуре. Конструкция тиристоров штыревая, в металлокерамическом корпусе с гибким выводом и AT Otot. Dy www.tiristor. Dy прижимными контактами. Тиристоры Т161-160 имеют оптимальную коммутируемую мощность, низкие статические и динамические потери. Они разработаны для промышленного применения. Соответствуют зарубежным аналогам и международным стандартам.

МАРКИРОВКА

Т	161	160	16	A2	X2	УХЛ2
1	2	3	4	5	6	7

- 1. низкочастотный тиристор;
- 2. конструктивное исполнение;
- 3. средний ток в открытом состоянии, в амперах;
- 4. класс по напряжению;
- 5. критическая скорость нарастания напряжения в закрытом состоянии;
 - 6. группа по времени выключения;
 - 7. климатическое исполнение по ГОСТ 15150: УХЛ2, Т.

Примечание:

- 1. критическая скорость нарастания напряжения в закрытом состоянии $(dv_D/dt)_{crit}$, обозначение группы: A2 не более 1000 В/мкс;
 - 2. время выключения t_a , обозначение группы: X2 не более 125 мкс.

Класс тиристора по напряжению соответствует его повторяющемуся импульсному напряжению в закрытом состоянии (U_{DRM}) и повторяющемуся импульсному обратному напряжению (U_{RRM}), согласно таблице:

					~ 17											
U _{DRM} , U _{RRM} , B	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600
Класс	1	2	3	4.	5	6	7	8	9	10	11	12	13	14	15	16

ПРЕДЕЛЬНО ДОПУСТИМЫЕ ЗНАЧЕНИЯ ПАРАМЕТРОВ

Параметры в проводящем состоянии.

Средний ток в открытом состоянии (I_{TAV}):

160 A при T_c= 99 °C, 180 эл. град. синус, 50 Гц; 220 А при T_c = 85 °C, 180 эл. град. синус, 50 Гц.

Действующий ток в открытом состоянии (I_{TRMS}): 251 A при T_c = 99 °C, **1**80 эл. град. синус, 50 Гц.

Ударный ток в открытом состоянии (I_{TSM}):

4 кА при $T_j = T_{j \text{ max}}$, 180 эл. град. синус, 50 Гц ($t_{\text{p}} = 10$ мс), единичный импульс, $U_D = U_R = 0$ В, импульс управления: $I_G = 2$ А, $t_{GP} = 50$ мкс, $di_G/dt \ge 1$ А/мкс;

4,6 кА при T_i = 25 °C, 180 эл. град. синус, 50 Гц (t_p =10 мс), единичный импульс, $U_D = U_R = 0$ В, импульс управления: $I_G = 2$ A, $t_{GP} = 50$ мкс, $di_G/dt \ge 1$ A/мкс. Защитный фактор (I^2t) :

80 A^2 с• 10^3 при T_j = $T_{j\ max}$, 180 эл. град. синус, 50 Гц (t_p =10 мс), единичный импульс, U_D = U_R =0 В, импульс управления: I_G =2 A, t_{GP} =50 мкс, di_G/dt ≥1 A/мкс;

105 $A^2c \cdot 10^3$ при T_j = 25 °C, 180 эл. град. синус, 50 Гц (t_p =10 мс), единичный импульс, U_D = U_R =0 B, импульс управления: I_G =2 A, t_{GP} =50 мкс, di_G/dt ≥1 A/мкс.

Блокирующие параметры.

Повторяющееся импульсное обратное напряжение (U_{RRM}) и повторяющееся импульсное напряжение в закрытом состоянии (U_{DRM}) в зависимости от класса тиристора равны: $100 \div 1600~B$ при условии $T_{j min} < T_{j} < T_{j max}$, 180~ эл. град. синус, 50~ Гц, управление разомкнуто.

Неповторяющееся импульсное обратное напряжение (U_{RSM}) и неповторяющееся импульсное напряжение в закрытом состоянии (U_{DSM}) в зависимости от класса тиристора равны: $110 \div 1700~B$ при $T_{j \ min} < T_{j} < T_{j \ max}$, 180 эл. град. синус, 50 Гц, единичный импульс, управление разомкнуто.

Постоянное обратное (U_R) и постоянное прямое напряжение (U_D) ровняются произведению: $0.75 \cdot U_{DRM}$ и $0.75 \cdot U_{RRM}$ соответственно, при условии $T_j = T_{j max}$, управление разомкнуто.

Параметры управления.

Максимальный прямой ток управления (I_{FGM}) равен 5 А при $T_i = T_{i \text{ max}}$.

Максимальное обратное напряжение управления (U_{RGM}) при $T_j = T_{j \text{ max}}$.

Максимальная рассеиваемая мощность по управлению (P_G) при $T_j = T_{j \text{ max}}$ для постоянного тока управления.

Параметры переключения.

Критическая скорость нарастания тока (f=1 Hz) в открытом состоянии (diT/dt)crit не более 250 А/мкс при $T_j = T_{j \text{ max}}$, $U_D = 0.67 \cdot U_{DRM}$, $I_{TM} = 2 I_{TAV}$, импульс управления: $I_G = 2$ A, $t_{GP} = 50$ мкс, $di_G/dt \ge 1$ А/мкс.

Тепловые параметры.

Температура хранения (T_{stq}) в пределах от -60 до +125 °C.

Температура p-n перехода (T_i) в пределах от -60 до +125 °C.

Механические параметры.

Крутящий момент затяжки (М): 20÷30 Нм.

Ускорение (a): 100 м/c^2 .

ХАРАКТЕРИСТИКИ

Характеристики в проводящем состоянии.

Импульсное напряжение в открытом состоянии (U_{TM}) не более 1,7 В при T_i =25 °C, I_{TM} = 502 A.

Пороговое напряжение ($U_{T(TO)}$)не более 1,05 В при $T_j = T_j$ max, $0,5\cdot 3,14\cdot I_{TAV} < I_T < 1,5\cdot 3,14\cdot I_{TAV}$.

Динамическое сопротивление в открытом состоянии (r_T) не более 1,360 мОм при $T_i = T_i$ max, 0,5·3,14· $I_{TAV} < I_T < 1,5·3,14·<math>I_{TAV}$.

Ток включения (I_L) не более 500 мА при T_i =25 °C, U_D =12 В, импульс управления: I_G =2 A, t_{GP} =50 мкс, di_G/dt ≥1 A/мкс.

Ток удержания (I_H) не менее 250 мА при T_i =25 °C, U_D =12 В, управление разомкнуто.

Блокирующие характеристики.

www.liristor.by Повторяющийся импульсный обратный ток (I_{RRM}) и повторяющийся импульсный ток в закрытом состоянии (I_{DRM}) не более 50 мА при $T_j = T_{j \text{ max}}$, $U_D = U_{DRM}$, $U_R = U_{RRM}$.

Характеристики управления.

Отпирающее постоянное напряжение управления (U_{GT}) равно:

```
4 В при T_j= T_{j \ min}, U_D=12 В, I_D=3 А, постоянный ток управления;
2,5 В при T_i = 25 °C, U_D = 12 В, I_D = 3 А, постоянный ток управления;
2 В при T_i = T_{i \text{ max}}, U_D = 12 В, I_D = 3 А, постоянный ток управления.
```

Отпирающий постоянный ток управления (I_{GT}) равен:

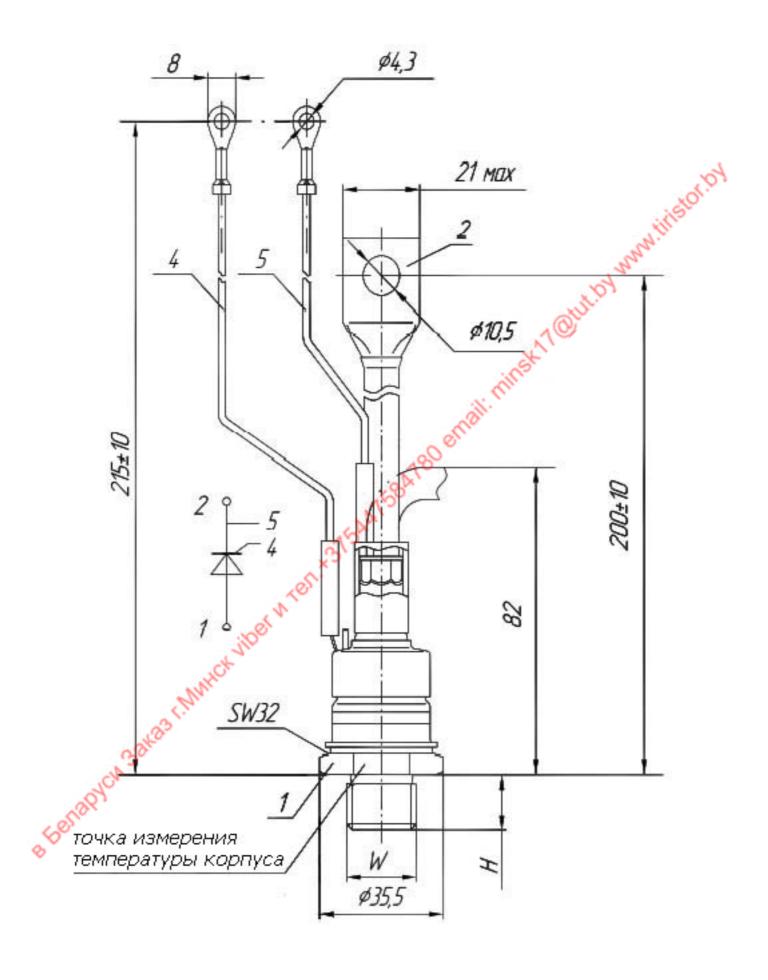
```
400 мА при T_j = T_{j \text{ min}}, U_D = 12 В, I_D = 3 А, постоянный ток управления; 250 мА при T_j = 25 °C, U_D = 12 В, I_D = 3 А, постоянный ток управления;
200 мА при T_j = T_{j \text{ max}}, U_D = 12 В, I_D = 3 А, постоянный ток управления.
```

Динамические характеристики.

Время задержки включения (t_{ad}) не более 2,0 мкс при T_i =25 °C, V_D =0,4· U_{DRM} , $I_{TM}=I_{TAV}$, импульс управления: $I_G=2$ A, $t_{GP}=50$ мкс, $di_G/dt \ge 1$ A/мкс.

Время выключения (t_a) не более 125 мкс при $dv_D/d_t=50$ В/мкс, $T_i=T_{i,max}$, $I_{TM} = I_{TAV}$, $di_R/dt = -10 \text{ A/MKC}$, $U_R = 100 \text{ B}$, $U_D = 0.67 \cdot U_{DRM}$.

Тепловые характеристики.


Тепловое сопротивление p-n переход-корпус (Rthic) не более 0,1 °C/Вт при постоянном токе.

Механические характеристики.

Масса: 250 г.

Длина пути тока утечки по поверхности (D_s): 12,4 мм. Длина пути тока утечки по воздуху (D_a) : 12,4 мм.

BEARAPYCH 3aka3 r.Muni Тип резьбы (W): метрическая M20x1,5. Высота резьбы (H): 16 мм.

